(1)求函數(shù)y=f(x)的反函數(shù)y=f-1(x);
(2)判定f-1(x)的奇偶性;
(3)解不等式f-1(x)>1.
解:(1)化簡(jiǎn),得f(x)=
設(shè)y=,則ax=.
∴x=loga.
∴所求反函數(shù)為
y=f-1(x)=loga(-1<x<1).
(2)∵f-1(-x)=loga=loga()-1=-loga=-f-1(x),
∴f-1(x)是奇函數(shù).
(3)loga>1.
當(dāng)a>1時(shí),
原不等式>a<0.
∴<x<1.
當(dāng)0<a<1時(shí),原不等式
解得
∴-1<x<.
綜上,當(dāng)a>1時(shí),所求不等式的解集為(,1);
當(dāng)0<a<1時(shí),所求不等式的解集為(-1,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
2-x | x+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
2 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ax+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2-2cosx |
2-2cos(
|
4π |
3 |
4π |
3 |
3 |
3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com