【題目】在中,內角A,B,C的對邊分別是a,b,c,且a2+b2+ab=c2.
(1)求C;
(2)設cos Acos B=,,求的值.
【答案】(1);(2)1或4.
【解析】(1)因為a2+b2+ab=c2,
所以由余弦定理有cos C=,
故.
(2)由題意得=,
因此(tan αsin Acos A)(tan αsin Bcos B)=,
即tan2αsin Asin Btan α(sin Acos B+cos Asin B)+cos Acos B=,
即tan2αsin Asin Btan αsin(A+B)+cos Acos B= ①.
因為,
所以A+B=,
所以sin(A+B)=.
因為cos(A+B)=cos Acos Bsin Asin B,即-sin Asin B=,
則sin Asin B=.
代入①得tan2α5tan α+4=0,解得tan α=1或tan α=4.
科目:高中數學 來源: 題型:
【題目】某校為了解校園安全教育系列活動的成效,對全校學生進行了一次安全意識測試,根據測試成績評定“合格”、“不合格”兩個等級,同時對相應等級進行量化:“合格”記5分,“不合格”記0分.現隨機抽取部分學生的答卷,統計結果及對應的頻率分布直方圖如圖所示:
等級 | 不合格 | 合格 | ||
得分 | ||||
頻數 | 6 | 24 |
(Ⅰ)求, , 的值;
(Ⅱ)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學生中隨機抽取10人進行座談.現再從這10人這任選4人,記所選4人的量化總分為,求的分布列及數學期望;
(Ⅲ)某評估機構以指標(,其中表示的方差)來評估該校安全教育活動的成效.若,則認定教育活動是有效的;否則認定教育活動無效,應調整安全教育方案.在(Ⅱ)的條件下,判斷該校是否應調整安全教育方案?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為矩形,側棱PA⊥底面ABCD,點E,F分別為BC、PD的中點,若PA=AD=4,AB=2.
(1)求證:EF∥平面PAB.
(2)求直線EF與平面PCD所成的角.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知具有相關關系的兩個變量之間的幾組數據如下表所示:
(1)請根據上表數據在網格紙中繪制散點圖;
(2)請根據上表提供的數據,用最小二乘法求出關于的線性回歸方程,并估計當時, 的值;
(3)將表格中的數據看作五個點的坐標,則從這五個點中隨機抽取2個點,求這兩個點都在直線的右下方的概率.
參考公式: , .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知⊙O是△ABC的外接圓,AB=BC,AD是BC邊上的高,AE是⊙O的直徑.
(1)求證:ACBC=ADAE;
(2)過點C作⊙O的切線交BA的延長線于點F,若AF=3,CF=9,求AC的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著國民生活水平的提高,利用長假旅游的人越來越多.某公司統計了2012到2016年五年間本公司職員每年春節(jié)期間外出旅游的家庭數,具體統計數據如下表所示:
(Ⅰ)從這5年中隨機抽取兩年,求外出旅游的家庭數至少有1年多于20個的概率;
(Ⅱ)利用所給數據,求出春節(jié)期間外出旅游的家庭數與年份之間的回歸直線方程,判斷它們之間是正相關還是負相關;并根據所求出的直線方程估計該公司2019年春節(jié)期間外出旅游的家庭數.
參考公式:,
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com