11.已知△ABC為銳角三角形,則下列判斷正確的是(  )
A.tan(sinA)<tan(cosB)B.tan(sinA)>tan(cosB)C.sin(tanA)<cos(tanB)D.sin(tanA)>cos(tanB)

分析 根據(jù)銳角△ABC中A+B>$\frac{π}{2}$,得出$\frac{π}{2}$>A>$\frac{π}{2}$-B>0,
利用正弦函數(shù)和正切函數(shù)的單調(diào)性,即可得出正確的結(jié)論.

解答 解:銳角△ABC中,A+B>$\frac{π}{2}$,
∴$\frac{π}{2}$>A>$\frac{π}{2}$-B>0,
又正弦函數(shù)在(0,$\frac{π}{2}$)上單調(diào)遞增,
∴sinA>sin($\frac{π}{2}$-B)=cosB,
又正切函數(shù)在(0,1)上單調(diào)遞增,
∴tan(sinA)>tan(cosB).
故選:B.

點(diǎn)評(píng) 本題考查了正弦、正切函數(shù)的單調(diào)性問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.己知各項(xiàng)均不為0的數(shù)列{an}中a1=$\frac{1}{2}$,且n≥2時(shí),an-1-an=an-1an,其前n項(xiàng)和為Sn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若對(duì)于任意正整數(shù)n,不等式S2n-Sn>$\frac{m}{16}$恒成立,求常數(shù)m所能取得的最大整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若f(x)=x2+bx+c對(duì)任意實(shí)數(shù)x都有f(1+x)=f(1-x),則f(cos1)與f(cos$\sqrt{2}$)的大小關(guān)系是f(cos1)<f(cos$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且當(dāng)x∈[0,1]時(shí),f(x)=x,則函數(shù)y=f(x)-log3|x|的零點(diǎn)個(gè)數(shù)是( 。
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知$f(α)=\frac{{sin({2π-α})cos({π+α})cos({\frac{π}{2}-α})}}{{sin({3π-α})sin({\frac{9π}{2}+α})}}+cos({2π-α})$.
(1)化簡(jiǎn)f(α);(2)若$f(α)=\frac{{\sqrt{10}}}{5}$,求$\frac{1}{sinα}+\frac{1}{cosα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知|$\overrightarrow{a}$|=5,向量$\overrightarrow{a}$與$\overrightarrow$的夾角θ=60°,則向量$\overrightarrow{a}$在$\overrightarrow$方向上的投影為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知等邊三角形的一個(gè)頂點(diǎn)位于拋物線y2=2px的焦點(diǎn),另外兩個(gè)頂點(diǎn)在拋物線上,則這個(gè)等邊三角形的邊長(zhǎng)(4±2$\sqrt{3}$)|p|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.?dāng)?shù)列{an}中,a1=1,an+1=an+2n-1,則a6=(  )
A.31B.32C.63D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知A(x1,y1),B(x2,y2)是拋物線C:x2=2py(p>0)上不同兩點(diǎn).
(1)設(shè)直線l:y=$\frac{p}{4}$與y軸交于點(diǎn)M,若A,B兩點(diǎn)所在的直線方程為y=x-1,且直線l:y=$\frac{p}{4}$恰好平分∠AFB,求拋物線C的標(biāo)準(zhǔn)方程.
(2)若直線AB與x軸交于點(diǎn)P,與y軸的正半軸交于點(diǎn)Q,且y1y2=$\frac{{p}^{2}}{4}$,是否存在直線AB,使得$\frac{1}{|PA|}$+$\frac{1}{|PB|}$=$\frac{3}{|PQ|}$?若存在,求出直線AB的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案