對于任意實數(shù)x,符號[x]表示x的整數(shù)部分,即[x]是“不超過x的最大整數(shù)”,在數(shù)軸上,當x是整數(shù),[x]就是x,當x不是整數(shù),[x]是點x左側(cè)的第一個整數(shù)點,這個函數(shù)叫做“取整函數(shù)”,也叫高斯(Gauss)函數(shù),如[-2]=-2,[-1.5]=-2,[2.5]=2,則[log2
1
4
]+[log2
1
3
]+[log2
1
2
]+[log21]+[log22]+[log23]+[log24]+…+[log216]的值為(  )
A、28B、32C、33D、34
分析:本題考查的是函數(shù)的值域問題.在解答時,可先對式子進行化簡,再結(jié)合對數(shù)的大致范圍結(jié)合新定義分析出相應(yīng)具體值,即可進行最終式子的求值.
解答:解:由題意可知:
原式=[log2
1
4
]+[log2
1
3
]+[log2
1
2
]+[log21]+[log22]+[log23]+[log24]+…+[log216]
=-2-[log23]-1+0+1+[log23]+[log24]+…+[log216]
=-2-2-1+1+1+2+2+2+2+3+3+3+3+3+3+3+3+4
=33
故選C.
點評:本題考查的是函數(shù)的值域問題.在解答的過程當中充分體現(xiàn)了分類討論的思想、數(shù)據(jù)處理的能力以及新定義的理解與應(yīng)用.值得同學(xué)們體會與反思.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

8、對于任意實數(shù)x,符號[x]表示x的整數(shù)部分,即[x]是不超過x的最大整數(shù),例如[2]=2;[2.1]=2;[-2.2]=-3,這個函數(shù)[x]叫做“取整函數(shù)”,它在數(shù)學(xué)本身和生產(chǎn)實踐中有廣泛的應(yīng)用,那么[log31]+[log32]+[log33]+…+[log3243]的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、對于任意實數(shù)x,符號[x]表示x的整數(shù)部分,即[x]是不超過x的最大整數(shù),這個函數(shù)[x]叫做“取整函數(shù)”,那么[log31]+[log32]+[log33]+[log34]+…+[log3243]=
857

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列一段材料,然后解答問題:對于任意實數(shù)x,符號[x]表示“不超過x的最大整數(shù)”,在數(shù)軸上,當x是整數(shù),[x]就是x,當x不是整數(shù)時,[x]是點x左側(cè)的第一個整數(shù)點,這個函數(shù)叫做“取整函數(shù)”,也叫高斯(Gauss)函數(shù);如[-2]=-2,[-1.5]=-2,[2.5]=2;則[log2
1
4
]+[log2
1
3
]+[log2
1
2
]+[log21]+[log22]+[log23]+[log24]
+[log216]的值為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于任意實數(shù)x,符號[x]表示x的整數(shù)部分,即[x]是不超過x的最大整數(shù),則[log21]+[log22]+[log23]+[log24]+[log25]=
 

查看答案和解析>>

同步練習冊答案