【題目】設(shè)點(diǎn)P是曲線y=x3﹣ x+
上的任意一點(diǎn),點(diǎn)P處的切線傾斜角為α,則α的取值范圍為 .
【答案】[0°,90°]∪[120°,180°)
【解析】解:設(shè)點(diǎn)P是曲線 上的任意一點(diǎn),
∵ ∴y'=3x2﹣
∴點(diǎn)P處的切線的斜率k=3x2﹣
∴k
∴切線的傾斜角α的范圍為:[0°,90°]∪[120°,180°)
所以答案是:[0°,90°]∪[120°,180°)
【考點(diǎn)精析】本題主要考查了簡單復(fù)合函數(shù)的導(dǎo)數(shù)和直線的傾斜角的相關(guān)知識點(diǎn),需要掌握復(fù)合函數(shù)求導(dǎo):和
,稱則
可以表示成為
的函數(shù),即
為一個復(fù)合函數(shù)
;當(dāng)直線l與x軸相交時, 取x軸作為基準(zhǔn), x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角.特別地,當(dāng)直線l與x軸平行或重合時, 規(guī)定α=0°才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,
,
,
平面ABC.
若
,求直線
與平面
所成的角的大��;
在
的條件下,求二面角
的大�。�
若
,
平面
,G為垂足,令
其中p、q、
,求p、q、r的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠有兩臺不同機(jī)器A和B生產(chǎn)同一種產(chǎn)品各10萬件,現(xiàn)從各自生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取20件,進(jìn)行品質(zhì)鑒定,鑒定成績的莖葉圖如圖所示:
該產(chǎn)品的質(zhì)量評價標(biāo)準(zhǔn)規(guī)定:鑒定成績達(dá)到的產(chǎn)品,質(zhì)量等級為優(yōu)秀;鑒定成績達(dá)到
的產(chǎn)品,質(zhì)量等級為良好;鑒定成績達(dá)到
的產(chǎn)品,質(zhì)量等級為合格
將這組數(shù)據(jù)的頻率視為整批產(chǎn)品的概率.
Ⅰ
從等級為優(yōu)秀的樣本中隨機(jī)抽取兩件,記X為來自B機(jī)器生產(chǎn)的產(chǎn)品數(shù)量,寫出X的分布列,并求X的數(shù)學(xué)期望;
Ⅱ
完成下列
列聯(lián)表,以產(chǎn)品等級是否達(dá)到良好以上
含良好
為判斷依據(jù),判斷能不能在誤差不超過
的情況下,認(rèn)為B機(jī)器生產(chǎn)的產(chǎn)品比A機(jī)器生產(chǎn)的產(chǎn)品好;
A生產(chǎn)的產(chǎn)品 | B生產(chǎn)的產(chǎn)品 | 合計 | |
良好以上 | |||
合格 | |||
合計 |
已知優(yōu)秀等級產(chǎn)品的利潤為12元
件,良好等級產(chǎn)品的利潤為10元
件,合格等級產(chǎn)品的利潤為5元
件,A機(jī)器每生產(chǎn)10萬件的成本為20萬元,B機(jī)器每生產(chǎn)10萬件的成本為30萬元;該工廠決定:按樣本數(shù)據(jù)測算,兩種機(jī)器分別生產(chǎn)10萬件產(chǎn)品,若收益之差達(dá)到5萬元以上,則淘汰收益低的機(jī)器,若收益之差不超過5萬元,則仍然保留原來的兩臺機(jī)器
你認(rèn)為該工廠會仍然保留原來的兩臺機(jī)器嗎?
附:獨(dú)立性檢驗計算公式:
.
臨界值表:
k |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等比數(shù)列的前
項和為
,
,且
,
,
成等差數(shù)列,數(shù)列
滿足
.
(1)求數(shù)列的通項公式;
(2)設(shè),數(shù)列
的前
項和為
,若對任意
,不等式
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在拋物線
上,則當(dāng)點(diǎn)
到點(diǎn)
的距離與點(diǎn)
到拋物線焦點(diǎn)距離之和取得最小值時,點(diǎn)
的坐標(biāo)為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+bx2+cx﹣1當(dāng)x=﹣2時有極值,且在x=﹣1處的切線的斜率為﹣3.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在區(qū)間[﹣1,2]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某飛行器在4千米高空飛行,從距著陸點(diǎn)A的水平距離10千米處開始下降,已知下降飛行軌跡為某三次函數(shù)圖象的一部分,則該函數(shù)的解析式為( )
A.y= ﹣
x
B.y= x3﹣
x
C.y= x3﹣x
D.y=﹣ x3+
x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+bx(a,b∈R)在點(diǎn)(1,f(1))處的切線方程為x﹣2y﹣2=0.
(1)求a,b的值;
(2)當(dāng)x>1時,f(x)+ <0恒成立,求實數(shù)k的取值范圍;
(3)證明:當(dāng)n∈N* , 且n≥2時, +
+…+
>
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com