16.某園林基地培育了一種新觀賞植物,經(jīng)過了一年的生長發(fā)育,技術(shù)人員從中抽取了部分植株的高度(單位:厘米)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計(jì),按照[50,60),[60,70),[70,80),[80,90),[90,100]分組做出頻率分布直方圖,并作出樣本高度的莖葉圖(圖中僅列出了高度在[50,60),[90,100]的數(shù)據(jù)).

(1)求樣本容量n和頻率分布直方圖中的x,y
(2)在選取的樣本中,從高度在80厘米以上(含80厘米)的植株中隨機(jī)抽取3株,設(shè)隨機(jī)變量X表示所抽取的3株高度在[80,90)內(nèi)的株數(shù),求隨機(jī)變量X的分布列及數(shù)學(xué)期望.

分析 (1)由莖葉圖及頻率分布直方圖能求出樣本容量n和頻率分布直方圖中的x,y.
(2)由題意可知,高度在[80,90)內(nèi)的株數(shù)為5,高度在[90,100]內(nèi)的株數(shù)為2,共7株.抽取的3株中高度在[80,90)內(nèi)的株數(shù)X的可能取值為1,2,3,分別求出相應(yīng)的概率,由此能求出X的分布列和E(X).

解答 解:(1)由題意可知,
樣本容量$n=\frac{8}{0.016×10}=50,y=\frac{2}{50×10}=0.004$,
x=0.100-0.004-0.010-0.016-0.040=0.030.(4分)
(2)由題意可知,高度在[80,90)內(nèi)的株數(shù)為5,高度在[90,100]內(nèi)的株數(shù)為2,
共7株.抽取的3株中高度在[80,90)內(nèi)的株數(shù)X的可能取值為1,2,3,(5分)
則P(X=1)=$\frac{{C}_{5}^{1}{C}_{2}^{2}}{{C}_{7}^{3}}$=$\frac{1}{7}$,
$P(X=2)=\frac{C_5^2C_2^1}{C_7^3}=\frac{20}{35}=\frac{4}{7}$,
$P(X=3)=\frac{C_5^3C_2^0}{C_7^3}=\frac{10}{35}=\frac{2}{7}$,(8分)
∴X的分布列為:

X123
P$\frac{1}{7}$$\frac{4}{7}$$\frac{2}{7}$
(10分)
故E(X)=$1×\frac{1}{7}+2×\frac{4}{7}+3×\frac{2}{7}$=$\frac{15}{7}$.(12分)

點(diǎn)評(píng) 本題考查概率的求法,考查離散型隨機(jī)變量的分布列及數(shù)學(xué)期望的求法,涉及到平均數(shù)、方差、離散型隨機(jī)變量的分布列及數(shù)學(xué)期望等知識(shí)點(diǎn),考查推理論證能力、運(yùn)算求解能力、數(shù)據(jù)處理能力,考查化歸與轉(zhuǎn)化思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知O為原點(diǎn),直線ax+by+c=0與圓O:x2+y2=16交于兩點(diǎn)M,N,若a2+b2=c2,p為圓O上任一點(diǎn),則$\overrightarrow{PM}•\overrightarrow{PN}$的取值范圍是[-6.10].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)$f(x)=2sinxcos(\frac{π}{2}-x)-\sqrt{3}sin(π+x)cosx+sin(\frac{π}{2}+x)cosx$.
(1)求函數(shù)y=f(x)的周期和單調(diào)遞增區(qū)間.
(2)若△ABC的三角A,B,C所對(duì)的三邊分別為a,b,c,且滿足(a-c)(a+c)=b(b-c),試求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知$tan(α+4π)=-\frac{4}{3}$,且$α∈(\frac{π}{2},π)$,求sinα,cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知等差數(shù)列{an}中,a3a7=-16,a4+a6=0,求a1,d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.橢圓$\frac{x^2}{16}+\frac{y^2}{9}=1$,過左焦點(diǎn)F1的直線交橢圓與A,B兩點(diǎn),則△ABF2的周長為( 。
A.32B.20C.16D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)α、β∈(0,$\frac{π}{2}$),試用柯西不等式證明 $\frac{1}{co{s}^{2}α}$+$\frac{1}{si{n}^{2}α•co{s}^{2}β•si{n}^{2}β}$≥9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,a1<0且$\frac{{a}_{6}}{{a}_{5}}$=$\frac{8}{11}$,則當(dāng)Sn取最小值時(shí),n的值為( 。
A.11B.10C.9D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.實(shí)數(shù)x,y滿足$\frac{x^2}{16}+\frac{y^2}{9}=1$,則z=x+y的取值范圍是[-5,5].

查看答案和解析>>

同步練習(xí)冊(cè)答案