12.雙曲線$\frac{{y}^{2}}{16}-\frac{{x}^{2}}{9}$=1上一點(diǎn)P到一個焦點(diǎn)的距離是10,那么點(diǎn)P到另一個焦點(diǎn)的距離是2或8.

分析 利用雙曲線的定義求解即可.

解答 解:由雙曲線的定義可知:雙曲線$\frac{{y}^{2}}{16}-\frac{{x}^{2}}{9}$=1,2a=8,
雙曲線上一點(diǎn)P到一個焦點(diǎn)的距離是10,那么點(diǎn)P到另一個焦點(diǎn)的距離是:2或18.
故答案為:2或18.

點(diǎn)評 本題考查雙曲線的簡單性質(zhì)的應(yīng)用,雙曲線的定義的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若直線l∥平面α,直線a?α,則l與a的位置關(guān)系是(  )
A.l∥aB.l與a異面C.l與a相交D.l與a沒有公共點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{sin\frac{πx}{2},x≤0}\\{\frac{1}{6}-{{log}_3}x,x>0}\end{array}}$,則$f[{f({3\sqrt{3}})}]$=-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.$\frac{2}{3}$B.1C.$\frac{4}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在等比數(shù)列{an}中,a1=3,公比$q=\sqrt{2}$,則a7等于( 。
A.12B.15C.18D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知曲線y=$\frac{x^2}{4}$-lnx的一條切線的斜率為$\frac{1}{2}$,則切點(diǎn)的橫坐標(biāo)為( 。
A.3B.2C.2,-1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.正四棱錐底面正方形的邊長為4,高與斜高的夾角為30°,則該四棱錐的側(cè)面積為(  )
A.32B.64C.$16\sqrt{7}$D.$16\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知集合A={1,a,b},B={a,a2,ab},若A=B,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知點(diǎn)A的坐標(biāo)為(4,3),F(xiàn)為拋物線y2=4x的焦點(diǎn),若點(diǎn)P在拋物線上移動,則當(dāng)|PA|+|PF|取最小值時點(diǎn)P的坐標(biāo)為($\frac{9}{4}$,3).

查看答案和解析>>

同步練習(xí)冊答案