2.若直線l∥平面α,直線a?α,則l與a的位置關(guān)系是( 。
A.l∥aB.l與a異面C.l與a相交D.l與a沒有公共點

分析 以正方體為載體,列舉出所有可能結(jié)果,由此能求出結(jié)果.

解答 解:在正方體ABCD-A1B1C1D1中,
直線A1B1∥面ABCD,AB?面ABCD,A1B1∥AB;
直線A1B1∥面ABCD,AD?面ABCD,且A1B1與AD是異面直線.
∵直線l∥平面α,直線a?α,
∴l(xiāng)與a的位置關(guān)系是平面或異面,
∴l(xiāng)與a沒有公共點.
故選:D.

點評 本題考查命題真假的判斷,是基礎(chǔ)題,解題時要認(rèn)真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合M={x|x≤1},P={x|x<t},若M∪P=P,則實數(shù)t應(yīng)該滿足的條件是(  )
A.t>1B.t≥1C.t<1D.t≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知全集U={1,2,3,4,5,6},A={1,3,5},B={2,3,4},則(∁UA)∩B=( 。
A.{2,4}B.{ 3 }C.{2,4,6}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知x與y之間的幾組數(shù)據(jù)如表:
x 345 6
y2.5344.5
假設(shè)根據(jù)上表數(shù)據(jù)所得線性回歸方程為$\widehat{y}$=$\widehat$x+<“m“:math xmlns:dsi='http://www.dessci.com/uri/2003/MathML'dsi:zoomscale='150'dsi:_mathzoomed='1'style='CURSOR:pointer; DISPLAY:inline-block'>a^$\widehat{a}$,根據(jù)中間兩組數(shù)據(jù)(4,3)和(5,4)求得的直線方程為y=bx+a,則$\widehat$<b,$\widehat{a}$>a.(填“>”或“<”)
附:回歸直線方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1+\frac{3}{5}t\\ y=-1+\frac{4}{5}t\end{array}$(t為參數(shù)),以原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=$\sqrt{2}sin(θ+\frac{π}{4})$.
(1)求曲線C的直角坐標(biāo)方程;
(2)若直線l與曲線C交于M,N兩點,求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在150米高的山頂上,測得山下一塔的塔頂與塔底的俯角分別為30°,60°x=0,則塔高為( 。
A.50米B.75米C.100米D.125米

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖,一塊均勻的正三角形面的鋼板的質(zhì)量為10$\sqrt{6}$kg,在它的頂點處分別受力F1,F(xiàn)2,F(xiàn)3,每個力同它相鄰的三角形的兩邊之間的角都是60°,且|F1|=|F2|=|F3|.要提起這塊鋼板,|F1|,|F2|,|F3|均要大于xkg,則x的最小值為$\frac{20\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列命題正確的是( 。
A.若x≠kπ,k∈Z,則 sin2x+$\frac{2}{si{n}^{2}x}$≥2$\sqrt{2}$B.若a<0,則a+$\frac{4}{a}$≥-4
C.若a>0,b>0,則lga+lgb$≥2\sqrt{lga•lgb}$D.若a<0,b<0,則$\frac{a}+\frac{a}≥2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.雙曲線$\frac{{y}^{2}}{16}-\frac{{x}^{2}}{9}$=1上一點P到一個焦點的距離是10,那么點P到另一個焦點的距離是2或8.

查看答案和解析>>

同步練習(xí)冊答案