分析 (1)令n=1,n=2可得a,b的方程,解方程可得a=b=1,可得前n項和Sn,再由當(dāng)n=1時,a1=S1=$\frac{1}{2}$,當(dāng)n>1時,an=Sn-Sn-1,計算可得數(shù)列{an}的通項公式;
(2)bn=$\frac{{a}_{n}}{{n}^{2}+n-1}$=$\frac{1}{{n}^{2}+n}$=$\frac{1}{n}$-$\frac{1}{n+1}$,運用數(shù)列的求和方法:裂項相消求和,解不等式即可得到所求n的最小值.
解答 解:(1)由a1=S1=$\frac{1}{a+b}$=$\frac{1}{2}$,
S2=a1+a2=$\frac{4}{2a+b}$=$\frac{4}{3}$,
可得a=b=1,
則Sn=$\frac{{n}^{2}}{n+1}$;
當(dāng)n=1時,a1=S1=$\frac{1}{2}$,
當(dāng)n>1時,an=Sn-Sn-1=$\frac{{n}^{2}}{n+1}$-$\frac{(n-1)^{2}}{n}$=$\frac{{n}^{2}+n-1}{{n}^{2}+n}$,
對n=1也成立;
可得an=$\frac{{n}^{2}+n-1}{{n}^{2}+n}$;
(2)bn=$\frac{{a}_{n}}{{n}^{2}+n-1}$=$\frac{1}{{n}^{2}+n}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
前n項和Tn=b1+b2+b3+…+bn
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$,
Tn>$\frac{2006}{2016}$即為1-$\frac{1}{n+1}$>$\frac{2006}{2016}$,
解得n>200.6,由于n為正整數(shù),
可得最小正整數(shù)n為201.
點評 本題考查數(shù)列的通項的求法,注意運用數(shù)列的通項和前n項和的關(guān)系,考查數(shù)列不等式的解法,注意運用數(shù)列的求和方法:裂項相消求和,考查化簡整理的運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x,0,1,2} | B. | {x,0,1} | C. | {x,0,2} | D. | {0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $\sqrt{10}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | $\frac{\sqrt{10}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com