12.設(shè)函數(shù)f(x)是R上的減函數(shù),若f(m-1)>f(2m-1),則實數(shù)m的取值范圍是(0,+∞).

分析 根據(jù)函數(shù)f(x)是R上的減函數(shù),且f(m-1)>f(2m-1),可得 m-1<2m-1,由此解得m的范圍.

解答 解:由于函數(shù)f(x)是R上的減函數(shù),f(m-1)>f(2m-1),
則有 m-1<2m-1,解得 m>0,故實數(shù)m的取值范圍是(0,+∞),
故答案為 (0,+∞).

點評 本題主要考查函數(shù)的單調(diào)性的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.復(fù)數(shù)$z=\frac{3+7i}{i}$的實部與虛部分別為( 。
A.7,-3B.7,-3iC.-7,3D.-7,3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在銳角△ABC中,內(nèi)角A、B、C的對邊分別為a,b,c且$bcosC=\sqrt{2}acosB-ccosB$,
(1)求角B大小
(2)設(shè)A=θ,求函數(shù)$f(θ)=2{sin^2}(\frac{π}{4}+θ)-\sqrt{3}cos2θ-2$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=Msin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的部分圖象如下圖所示,其中A,B分別為函數(shù)f(x)圖象的一個最高點和最低點,且A,B兩點的橫坐標(biāo)分別為1,4,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,則函數(shù)f(x)的一個單調(diào)減區(qū)間為(  )
A.(-6,-3)B.(6,9)C.(7,10)D.(10,13)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知在R上可導(dǎo)的函數(shù)f(x)的圖象如圖所示,則不等式f(x)•f′(x)<0的解集為( 。
A.(-2,0)B.(-∞,-2)∪(-1,0)C.(-∞,-2)∪(0,+∞)D.(-2,-1)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=$\sqrt{5}$.
(1)求證:PD⊥平面PAB;
(2)求二面角P-CD-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知不等式x2+ax+1>0,
(1)解此關(guān)于x的不等式;
(2)若此不等式對任意x>0恒成立,試求實數(shù)a的取值集合;
(3)若此不等式對任意a<1恒成立,試求實數(shù)x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,圓柱的高為2,底面半徑為3,AE,DF是圓柱的兩條母線,B、C是下底面圓周上的兩點,已知四邊形ABCD是正方形.
(1)求證:BC⊥BE;
(2)求幾何體AEB-DFC的體積;
(3)求平面DFC與平面ABF所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知${∫}_{0}^{1}$(x+m)dx=1,則函數(shù)f(x)=logm(3+2x-x2)的單調(diào)遞減區(qū)間是(-1,1).

查看答案和解析>>

同步練習(xí)冊答案