已知函數(shù)f(x)的圖象與函數(shù)h(x)=x++2的圖象關于點A(0,1)對稱.
(1)求f(x)的解析式;
(2)若g(x)=f(x)·x+ax,且g(x)在區(qū)間[0,2]上為減函數(shù),求實數(shù)a的取值范圍.
科目:高中數(shù)學 來源: 題型:解答題
(12分)(2011•湖北)提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù),當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數(shù).
(Ⅰ)當0≤x≤200時,求函數(shù)v(x)的表達式;
(Ⅱ)當車流密度x為多大時,車流量(單位時間內通過橋上某觀測點的車輛數(shù),單位:輛/小時)f(x)=x•v(x)可以達到最大,并求出最大值.(精確到1輛/小時).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)定義在上,對任意的,,且.
(1)求,并證明:;
(2)若單調,且.設向量,對任意,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知二次函數(shù)f(x)=ax2+bx+c (a≠0)且滿足f(-1)=0,對任意實數(shù)x,恒有f(x)-x≥0,并且當x∈(0,2)時,f(x)≤.
(1)求f(1)的值;
(2)證明:a>0,c>0;
(3)當x∈[-1,1]時,函數(shù)g(x)=f(x)-mx (x∈R)是單調函數(shù),求證:m≤0或m≥1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某公司以每噸10萬元的價格銷售某種產品,每年可售出該產品1000噸,若將該產品每噸的價格上漲x%,則每年的銷售數(shù)量將減少,該產品每噸的價格上漲百分之幾,可使銷售的總金額最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
市場營銷人員對過去幾年某商品的價格及銷售數(shù)量的關系作數(shù)據分析發(fā)現(xiàn)有如下規(guī)律:該商品的價格每上漲x%(x>0),銷售數(shù)量就減少kx%(其中k為正常數(shù)).目前該商品定價為每個a元,統(tǒng)計其銷售數(shù)量為b個.
(1)當k=時,該商品的價格上漲多少,才能使銷售的總金額達到最大?
(2)在適當?shù)臐q價過程中,求使銷售總金額不斷增加時k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com