已知奇函數(shù)f(x),定義域為R且f(x)在(0,+∞)內(nèi)單調(diào)遞增,則f(-2),f(1),f(-1)的大小關系為


  1. A.
    f(-2)<f(-1)<f(1)
  2. B.
    f(-2)<f(1)<f(-1)
  3. C.
    f(-2)>f(-1)>f(1)
  4. D.
    無法確定
A
分析:根據(jù)奇函數(shù)的性質:在對稱區(qū)間上的單調(diào)性相同,從而可得函數(shù)f(x)在R上單調(diào)遞增,從而可進行比較
解答:根據(jù)奇函數(shù)的性質:在對稱區(qū)間上的單調(diào)性相同,從而可得函數(shù)f(x)在R上單調(diào)遞增
∵-2<-1<1
∴f(-2)<f(-1)<f(1)
故選A
點評:本題主要考查了奇函數(shù)的性質:在對稱區(qū)間上的單調(diào)性相同,從而可得函數(shù)f(x)的單調(diào)性,利用函數(shù)的單調(diào)性比較函數(shù)的值的大。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知奇函數(shù)f(x)為R上的減函數(shù),則關于a的不等式f(a2)+f(2a)>0的解集是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知f(x)=lg
1-x1+x
,判斷f(x)的奇偶性
(2)已知奇函數(shù)f(x)的定義域為R,x∈(-∞,0)時,f(x)=-x2-x-1,求f(x)解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下面四個命題:
①已知函數(shù)f(x)=
x
 ,x≥0 
-x
 ,x<0 
且f(a)+f(4)=4,那么a=-4;
②一組數(shù)據(jù)18,21,19,a,22的平均數(shù)是20,那么這組數(shù)據(jù)的方差是2;
③要得到函數(shù)y=sin(2x+
π
3
)
的圖象,只要將y=sin2x的圖象向左平移
π
3
單位;
④已知奇函數(shù)f(x)在(0,+∞)為增函數(shù),且f(-1)=0,則不等式f(x)<0的解集{x|x<-1}.
其中正確的是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知奇函數(shù)f(x)的定義域為R,且f(x)是以2為周期的周期函數(shù),數(shù)列{an}是首項為1,公差為1的等差數(shù)列,則f(a1)+f(a2)+…+f(a2008)的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知奇函數(shù)f(x)滿足f(x)=-f(x+2),當x∈[0,1]時,f(x)=x,若af2(x)+bf(x)+c=0在x∈[0,6]上恰有5個根,且記為xi(i=1,2,3,4,5),則x1+x2+x3+x4+x5=
 

查看答案和解析>>

同步練習冊答案