分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,進(jìn)行求最值即可.
解答 解:由z=x-2y得y=$\frac{1}{2}x-\frac{z}{2}$,
作出不等式組對應(yīng)的平面區(qū)域如圖(陰影部分ABC):
平移直線y=$\frac{1}{2}x-\frac{z}{2}$
由圖象可知當(dāng)直線y=$\frac{1}{2}x-\frac{z}{2}$,過點(diǎn)A時(shí),直線y=$\frac{1}{2}x-\frac{z}{2}$的截距最大,此時(shí)z最小,
由$\left\{\begin{array}{l}{3x-5y+6=0}\\{2x+3y-15=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=3}\end{array}\right.$,即A(3,3).
代入目標(biāo)函數(shù)z=x-2y,
得z=3-2×3=-3.
∴目標(biāo)函數(shù)z=x-2y的最小值是-3.
故答案為:-3.
點(diǎn)評 本題主要考查線性規(guī)劃的基本應(yīng)用,利用目標(biāo)函數(shù)的幾何意義是解決問題的關(guān)鍵,利用數(shù)形結(jié)合是解決問題的基本方法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{8}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x≤0,x2-1<2lnx | B. | ?x>0,x2-1<2lnx | C. | ?x>0,x2-1<2lnx | D. | ?x≤0,x2-1<2lnx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 84,84 | B. | 84,85 | C. | 85,84 | D. | 85,85 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com