10.經(jīng)過點(diǎn)$({\frac{1}{2},\frac{{\sqrt{3}}}{2}})$的圓x2+y2=1的切線方程是( 。
A.$x+\sqrt{3}y=2$B.$\sqrt{3}x+y=2$C.$x+\sqrt{3}y=1$D.$\sqrt{3}x+y=1$

分析 直接利用圓上的點(diǎn)的切線方程,求出即可.

解答 解:因?yàn)?({\frac{1}{2},\frac{{\sqrt{3}}}{2}})$是圓x2+y2=1上的點(diǎn),
所以它的切線方程為:$\frac{1}{2}$x+$\frac{\sqrt{3}}{2}$y=1,
即:x+$\sqrt{3}$y=2,
故選A.

點(diǎn)評 本題考查圓的切線方程,判斷點(diǎn)在圓上是解題的關(guān)鍵.圓上的點(diǎn)(x0,y0)的切線方程為:xx0+yy0=R2,值得注意圓的切線方程的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列直線中,與直線2x+y+1=0平行且與圓x2+y2=5相切的是( 。
A.2x+y+5=0B.x-2y+5=0C.$2x+y+5\sqrt{5}=0$D.$x-2y+5\sqrt{5}=0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知二次函數(shù)f(x)=ax2-(2a-1)x-lnx(a為常數(shù),a≠1).
(Ⅰ)當(dāng)a<0時(shí),求函數(shù)f(x)在區(qū)間[1,2]上的最大值;
(Ⅱ)記函數(shù)y=f(x)圖象為曲線C,設(shè)點(diǎn)A(x1,y1),B(x2,y2)是曲線C上不同的兩點(diǎn),點(diǎn)M為線段AB的中點(diǎn),過點(diǎn)M作x軸的垂線交曲線C于點(diǎn)N.判斷曲線C在點(diǎn)N處的切線是否平行于直線AB?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(I)化簡求值:${log_{\frac{1}{3}}}\sqrt{27}+lg25+lg4+{7^{-{{log}_7}2}}+{(-0.98)^0}$;
(II)已知角α的終邊上一點(diǎn)$P(\sqrt{2},-\sqrt{6})$,求值:$\frac{{cos(\frac{π}{2}+α)cos(2π-α)+sin(-α-\frac{π}{2})cos(π-α)}}{{sin(π+α)cos(\frac{π}{2}-α)}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列函數(shù)與函數(shù)y=x相等的是( 。
A.$y={({\sqrt{x}})^2}$B.$y=\sqrt{x^2}$C.$y={({\root{3}{x}})^3}$D.$y=\frac{x^2}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直線l平行于直線3x+4y-7=0,并且與兩坐標(biāo)軸圍成的△OAB的面積為24,
(Ⅰ)求直線l的方程;
(Ⅱ)求△OAB的內(nèi)切圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.當(dāng)雙曲線M:$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{2m+6}$=1(-2≤m<0)的焦距取得最小值時(shí),雙曲線M的漸近線方程為( 。
A.y=±$\sqrt{2}$xB.y=±$\frac{\sqrt{2}}{2}$xC.y=±2xD.y=±$\frac{1}{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.雙曲線$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{k}$=1的實(shí)軸長為8,離心率e∈(1,2),則k的取值范圍是( 。
A.(-∞,0)B.(-48,0)C.(-192,0)D.(-60,-48)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.不等式$\frac{x+2}{x-1}$≤0的解集為(  )
A.{x|-2<x<1}B.{x|-2≤x<1}C.{x|-2≤x≤1}D.{x|-2<x≤1}

查看答案和解析>>

同步練習(xí)冊答案