已知球O的表面積為16π,若在球O內(nèi)有兩個(gè)相外切的球,并且這兩個(gè)球都與球O相切,若這三個(gè)球的球心共線,則球O內(nèi)的這兩個(gè)球的表面積之和的最小值為(  )
A、8πB、6πC、4πD、2π
考點(diǎn):球的體積和表面積
專(zhuān)題:計(jì)算題,空間位置關(guān)系與距離
分析:求出球O的半徑,設(shè)兩個(gè)相外切的球的半徑分別為r,R,可得r+R=2,表示出球O內(nèi)的這兩個(gè)球的表面積之和,利用基本不等式,即可得出結(jié)論.
解答: 解:球O的表面積為16π,則球O的半徑為2,
設(shè)兩個(gè)相外切的球的半徑分別為r,R,則r+R=2,
球O內(nèi)的這兩個(gè)球的表面積之和為4π(r2+R2),
∵2(r2+R2)≥(r+R)2
∴4π(r2+R2)≥8π,
∴球O內(nèi)的這兩個(gè)球的表面積之和的最小值為8π.
故選:A.
點(diǎn)評(píng):本題考查球的表面積,考查基本不等式的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:“正數(shù)a的平方不等于0”,命題q:“a不是正數(shù),則它的平方等于0”,則p是q的( 。
A、逆命題B、否命題
C、逆否命題D、否定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

類(lèi)比下列平面內(nèi)的結(jié)論,在空間中仍能成立的是(  )
①平行于同一直線的兩條直線平行;
②垂直于同一直線的兩條直線平行;
③如果一條直線與兩條平行線中的一條垂直,則必與另一條垂直;
④如果一條直線與兩條平行線中的一條相交,則必與另一條相交.
A、①②④B、①③
C、②④D、①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

e1
、
e2
是夾角為60°的兩個(gè)單位向量,則向量
a
=2
e1
+
e2
與向量
b
=-3
e1
+2
e2
的夾角為( 。
A、120°B、90°
C、60°D、30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1的一個(gè)焦點(diǎn)到一條漸近線的距離為2a,則雙曲線的離心率為(  )
A、2
B、
2
C、
3
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若AC⊥BC,AC=b,BC=a,則△ABC的外接圓半徑r=
a2+b2
2
,將此結(jié)論拓展到空間,可得出的正確結(jié)論是:在四面體S-ABC中,若SA、SB、SC兩兩互相垂直,SA=a,SB=b,SC=c,則四面體S-ABC的外接球半徑R=( 。
A、
a2+b2+c2
2
B、
a2+b2+c2
3
C、
3a3+b3+c3
3
D、
3abc

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=(x-1)(x-2)(x-3)(x-4),則f′(2)=( 。
A、-1B、0C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由“在平面內(nèi)三角形的內(nèi)切圓的圓心到三邊的距離相等”聯(lián)想到“在空間中內(nèi)切于三棱錐的球的球心到三棱錐四個(gè)面的距離相等”這一推理過(guò)程是( 。
A、歸納推理B、類(lèi)比推理
C、演繹推理D、聯(lián)想推理

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,半徑為30cm的
1
4
圓形(O為圓心)鐵皮上截取一塊矩形材料OABC,其中點(diǎn)B在圓弧上,點(diǎn)A、C在兩半徑上,現(xiàn)將此矩形材料卷成一個(gè)以AB為母線的圓柱形罐子的側(cè)面(不計(jì)剪裁和拼接損耗),設(shè)OB與矩形材料的邊OA的夾角為θ,圓柱的體積為Vcm3;
(1)求V關(guān)于θ的函數(shù)關(guān)系式;
(2)求圓柱形罐子體積V的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案