設(shè)命題p:方程表示雙曲線,命題q:圓x2+(y-1)2=9與圓(x-a)2+(y+1)2=16相交.若“¬p且q”為真命題,求實(shí)數(shù)a的取值范圍.
【答案】分析:由于“¬p且q”為真命題,則¬p為真命題,q也為真命題,亦即p為假命題,q為真命題.由于方程表示雙曲線,則(a+6)(a-7)<0,所以p為假命題即是(a+6)(a-7)≥0;若q為真命題,則兩圓心距大于兩半徑差的絕對(duì)值小于兩半徑之和,故.求出它們的交集即可.
解答:解:若p真,即方程表示雙曲線,
則(a+6)(a-7)<0,∴-6<a<7.                
若q真,即圓x2+(y-1)2=9與圓(x-a)2+(y+1)2=16相交,
,∴.                
若“¬p且q”為真命題,則p假q真,
,即
∴符合條件的實(shí)數(shù)a的取值范圍是
點(diǎn)評(píng):本題考查的是與復(fù)合命題的真假判定有關(guān)的參數(shù)問(wèn)題,解決的辦法是先判斷出組成復(fù)合命題的簡(jiǎn)單命題的真假,再求出相應(yīng)的參數(shù)的取值范圍即可;此類(lèi)題是簡(jiǎn)單邏輯用語(yǔ)的經(jīng)典題型,要切實(shí)掌握好.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)命題p:方程數(shù)學(xué)公式表示雙曲線,命題q:圓x2+(y-1)2=9與圓(x-a)2+(y+1)2=16相交.若“¬p且q”為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:0111 期中題 題型:解答題

設(shè)命題p:方程表示焦點(diǎn)在y軸上的雙曲線,命題q:函數(shù)在(0,2)內(nèi)單調(diào)遞減,如果為真命題,求k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年陜西省寶雞市金臺(tái)區(qū)高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)命題p:方程表示中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上的雙曲線,命題q:存在x∈R,則x2-4x+a<0.
(1)寫(xiě)出命題q的否定;
(2)若“p或非q”為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年江蘇省南京市白下區(qū)高三迎市二模考試數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)命題p:方程表示雙曲線,命題q:圓x2+(y-1)2=9與圓(x-a)2+(y+1)2=16相交.若“¬p且q”為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案