精英家教網 > 高中數學 > 題目詳情
如圖,在三棱錐P-ABC中,PA=PB=PC=BC,且∠BAC=,則PA與底面ABC所成角為   
【答案】分析:P在底面的射影E是△ABC的外心,故E是BC的中點,三角形PAE中,求出三邊邊長、tan∠PAE的值,即可得到PA與底面ABC所成角的大。
解答:解:∵PA=PB=PC,∴P在底面的射影E是△ABC的外心,又
故E是BC的中點,所以PA與底面ABC所成角為∠PAE,等邊三角形PBC中,
PE=,直角三角形ABC中,AE=BC=,又PA=1,
∴三角形PAE中,tan∠PAE==∴∠PAE=,
則PA與底面ABC所成角為
點評:本題考查直線與平面成的角的求法.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,在三棱錐P-ABC中,PA、PB、PC兩兩垂直,且PA=3.PB=2,PC=1.設M是底面ABC內一點,定義f(M)=(m,n,p),其中m、n、p分別是三棱錐M-PAB、三棱錐M-PBC、三棱錐M-PCA的體積.若f(M)=(
1
2
,x,y),且
1
x
+
a
y
≥8恒成立,則正實數a的最小值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,則當△AEF的面積最大時,tanθ的值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分別為AB、AC中點.
(Ⅰ)求證:DE‖平面PBC;
(Ⅱ)求證:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在三棱錐P-ABC中,已知PA=PB=PC,∠BPA=∠BPC=∠CPA=40°,一繩子從A點繞三棱錐側面一圈回到點A的最短距離是
3
,則PA=
1
1

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,點D,E分別在棱
PB,PC上,且BC∥平面ADE
(I)求證:DE⊥平面PAC;
(Ⅱ)當二面角A-DE-P為直二面角時,求多面體ABCED與PAED的體積比.

查看答案和解析>>

同步練習冊答案