如圖,在棱長為4的正方體ABCD-A1B1C1D1中,點E、F、G分別為AB、BC、BB1的中點.則以B為頂點的三棱錐B-GEF的高h=
 
考點:棱錐的結(jié)構(gòu)特征
專題:計算題,空間位置關系與距離
分析:變換三棱錐的頂點,求出體積,由體積確定三棱錐的高.
解答: 解:∵S△BEF=
1
2
BE•BF=
1
2
×2×2=2,BG=2,
∴三棱錐G-BEF的體積=V=
1
3
×2×2=
4
3
;
若以B為頂點,則底面為正三角形GEF,
其邊長為EF=
BE2+BF2
=2
2

∴S△GEF=
3
4
×(2
2
2=2
3

又∵三棱錐B-GEF和三棱錐G-BEF的體積相等,
∴當以B為頂點時,三棱錐的高h=
4
3
×3
2
3
=
2
3
3

故答案為
2
3
3
點評:本題考查了學生的空間想象力及體積的計算,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知定義域R的函數(shù)f(x)為偶函數(shù),且f(x+2)=f(x)對任意實數(shù)x恒成立,當0≤x≤1時,f(x)=x.
(1)求當-1≤x<0時,f(x)的解析式;
(2)求當x∈[2k-1,2k+1),(k∈Z)時,函數(shù)f(x)的解析式;
(3)求方程f(x)=
1
2
在區(qū)間[-1,2013]內(nèi)的所有解的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求(x2-
1
2x
9展開式中的常數(shù)項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面內(nèi)動點M到點F(1,0)的距離比它到y(tǒng)軸的距離大1,動點M的軌跡記為曲線C.
(1)求曲線C的方程;
(2)A,B是曲線C上的兩點,O是原點,若△OAB是等邊三角形,求OA的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設兩個非零向量
e1
e2
不共線.
(1)如果
AB
=
e1
+
e2
,
BC
=2
e1
+8
e2
,
CD
=3
e1
-3
e2
,求證:A、B、D三點共線;
(2)若|
e1
|=2,|
e2
|=3,
e1
e2
的夾角為60°,是否存在實數(shù)m,使得m
e1
+
e2
e1
-
e2
垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文)已知3sinx-cosx=0則則
sin2x-sin2x
cos2x
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解不等式:
(Ⅰ)|1-2x|≤3;         
(Ⅱ)1≤|x+1|<5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xn-
4
x
,且f(4)=3.
(1)求n的值,并判斷該函數(shù)的奇偶性;
(2)若不等式f(x)-a>0在[1,+∞)上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示的偽代碼輸出的結(jié)果S為
 

查看答案和解析>>

同步練習冊答案