【題目】已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n的展開式中x的系數(shù)恰好是數(shù)列{an}的前n項和Sn
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}滿足 ,記數(shù)列{bn}的前n項和為Tn , 求證:Tn<1.

【答案】
(1)解:(1+x)+(1+x)2+(1+x)3+…+(1+x)n的展開式中x的系數(shù)為 =

,

所以當(dāng)n≥2時,an=Sn﹣Sn1=n.

當(dāng)n=1時,a1=1也適合上式.

所以數(shù)列{an}的通項公式為an=n


(2)證明: ,

所以

所以Tn<1


【解析】(1)根據(jù)二項式定理可得 ,繼而求出數(shù)列的通項公式;(2)根據(jù)“裂項求和“即可證明.
【考點精析】解答此題的關(guān)鍵在于理解數(shù)列的通項公式的相關(guān)知識,掌握如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的右焦點為F,過點F的直線交y軸于點N,交橢圓C于點A、P(P在第一象限),過點P作y軸的垂線交橢圓C于另外一點Q.若

(1)設(shè)直線PF、QF的斜率分別為k、k',求證: 為定值;
(2)若 且△APQ的面積為 ,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一臺機器由于使用時間較長,生產(chǎn)的零件有一些缺損.按不同轉(zhuǎn)速生產(chǎn)出來的零件有缺損的統(tǒng)計數(shù)據(jù)如下表所示:

轉(zhuǎn)速x(轉(zhuǎn)/秒)

16

4

12

8

每小時生產(chǎn)有缺損零件數(shù)y(個)

11

9

8

5

(1)作出散點圖;

(2)如果yx線性相關(guān),求出回歸直線方程;

(3)若實際生產(chǎn)中,允許每小時的產(chǎn)品中有缺損的零件最多為10個,那么,機器的運轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù),又在(﹣∞,0)內(nèi)單調(diào)遞增的為(
A.y=x4+2x
B.y=2|x|
C.y=2x﹣2x
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)作為藍(lán)色海洋教育特色學(xué)校,隨機抽取100名學(xué)生,進(jìn)行一次海洋知識測試,按測試成績(假設(shè)考試成績均在[65,90)內(nèi))分組如下:第一組[65,70),第二組 [70,75),第三組[75,80),第四組 [80,85),第五組 [85,90).得到頻率分布直方圖如圖C34.

(1)求測試成績在[80,85)內(nèi)的頻率;

(2)從第三、四、五組學(xué)生中用分層抽樣的方法抽取6名學(xué)生組成海洋知識宣講小組,定期在校內(nèi)進(jìn)行義務(wù)宣講,并在這6名學(xué)生中隨機選取2名參加市組織的藍(lán)色海洋教育義務(wù)宣講隊,求第四組至少有1名學(xué)生被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的長軸長為6,且橢圓C與圓M:(x﹣2)2+y2= 的公共弦長為
(1)求橢圓C的方程,
(2)過點P(0,2)作斜率為k(k≠0)的直線l與橢圓C交于兩點A,B,試判斷在x軸上是否存在點D,使得△ADB為以AB為底邊的等腰三角形,若存在,求出點D的橫坐標(biāo)的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若a>0,b>0,則稱 為a,b的調(diào)和平均數(shù).如圖,點C為線段AB上的點,且AC=a,BC=b,點O為線段AB中點,以AB為直徑做半圓,過點C作AB的垂線交半圓于D,連結(jié)OD,AD,BD.過點C作OD的垂線,垂足為E,則圖中線段OD的長度是a,b的算術(shù)平均數(shù),那么圖中表示a,b的幾何平均數(shù)與調(diào)和平均數(shù)的線段,以及由此得到的不等關(guān)系分別是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點,焦點在軸上,離心率為的橢圓過點.

(1)求橢圓方程;

(2)設(shè)不過原點O的直線,與該橢圓交于P、Q兩點,直線OP、OQ的斜率依次為,滿足,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=-x3+2ax2-3a2x(a∈R且a≠0).

(1)當(dāng)a=-1時,求曲線y=f(x)在點(-2,f(-2))處的切線方程;

(2)當(dāng)a>0時,求函數(shù)y=f(x)的單調(diào)區(qū)間和極值;

(3)當(dāng)x∈[2a,2a+2]時,不等式|f′(x)|≤3a恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案