已知復數(shù)z=
3
+i
1-
3
i
,則z的虛部為( 。
A、iB、-iC、1D、0
考點:復數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴充和復數(shù)
分析:利用復數(shù)的運算法則即可得出.
解答: 解:復數(shù)z=
3
+i
1-
3
i
=
i(
3
+i)
i(1-
3
i)
=
i(
3
+i)
i+
3
=i.
z的虛部為1.
故選:C.
點評:本題考查了復數(shù)的運算法則,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設平面α的一個法向量為
n1
=(1,2,-2),平面β的一個法向量為
n2
=(-2,-4,k),若α∥β,則k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(5a-1)x+2在R上是增函數(shù),則a的取值范圍是( 。
A、(-∞,+∞)
B、(-∞,
1
5
C、(
1
5
,+∞)
D、(5,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y=ln(2x-1)-5上的點到直線2x-y+3=0的最短距離為(  )
A、
5
B、2
5
C、3
5
D、0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tanα=-
1
2
,α為第二象限角,則cos(α-
π
4
)=(  )
A、-
3
10
10
B、-
10
10
C、
10
10
D、
3
10
10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:?x∈R,9x2-6x+1>0;命題q:?x∈R,sinx+cosx=
3
,則( 。
A、¬p是假命題
B、¬q是假命題
C、p∨q是真命題
D、(¬p)∧(¬q)是真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x=2是函數(shù)f(x)=x3-3ax+2的極小值點,那么函數(shù)f(x)的極大值為( 。
A、15B、16C、17D、18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求值:(tan10°-
3
)sin40°=( 。
A、-1
B、-
2
C、-
3
D、-
6+
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2e-2x,求函數(shù)在[1,2]上的最大值.

查看答案和解析>>

同步練習冊答案