直線與雙曲線僅有一個公共點,則實數(shù)的值為
A.1B.-1C.1或-1D.1或-1或0
C

試題分析:由得:,
,此時方程只有一根,所以直線與雙曲線僅有一個公共點;
時,要滿足題意需,此時無解。
所以直線與雙曲線僅有一個公共點,則實數(shù)的值為1或-1。
點評:在判斷直線與雙曲線的位置關系時,一般的方法是聯(lián)立,組成方程組,消元,判斷方程解的個數(shù)。一定要注意討論二次項系數(shù)是否為0的情況。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

已知拋物線,焦點為,準線為,為拋物線上一點,為垂足,如果直線的斜率為,那么        。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

曲線與曲線的(   )
A.離心率相等B.焦距相等C.焦點相同D.準線相同

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

方程所表示的曲線是(   )
A.雙曲線B.橢圓C.雙曲線的一部分D.橢圓的一部分

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,斜率為1的直線過拋物線的焦點F,與拋物線交于兩點A,B,

(1)若|AB|=8,求拋物線的方程;
(2)設C為拋物線弧AB上的動點(不包括A,B兩點),求的面積S的最大值;
(3)設P是拋物線上異于A,B的任意一點,直線PA,PB分別交拋物線的準線于M,N兩點,證明M,N兩點的縱坐標之積為定值(僅與p有關)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分15分) 已知動圓過定點,且與直線相切,橢圓 的對稱軸為坐標軸,一個焦點是,點在橢圓上.
(Ⅰ)求動圓圓心的軌跡的方程及其橢圓的方程;
(Ⅱ)若動直線與軌跡處的切線平行,且直線與橢圓交于兩點,問:是否存在著這樣的直線使得的面積等于?如果存在,請求出直線的方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知橢圓的離心率為,且橢圓上一點與橢圓的兩個焦點構成的三角形周長為
(1)求橢圓的方程;
(2)設直線與橢圓交于兩點,且以為直徑的圓過橢圓的右頂點,
面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

中心在原點,焦點在x軸上,若長軸長為18,且兩個焦點恰好將長軸三等分,則此橢圓的標準方程為______________________________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓的對稱軸為坐標軸,焦點在軸上,離心率,分別為橢圓的上頂點和右頂點,且
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線與橢圓相交于兩點,且(其中為坐標原點),求的值.

查看答案和解析>>

同步練習冊答案