【題目】公元五世紀(jì),數(shù)學(xué)家祖沖之估計(jì)圓周率的值的范圍是:,為紀(jì)念數(shù)學(xué)家祖沖之在圓周率研究上的成就,某教師在講授概率內(nèi)容時(shí)要求學(xué)生從小數(shù)點(diǎn)后的6位數(shù)字1,41,59,2中隨機(jī)選取兩個(gè)數(shù)字做為小數(shù)點(diǎn)后的前兩位(整數(shù)部分3不變),那么得到的數(shù)字大于3.14的概率為(

A.B.C.D.

【答案】D

【解析】

由題意將從小數(shù)點(diǎn)后的6位數(shù)字中隨機(jī)選取兩個(gè)數(shù)字做為小數(shù)點(diǎn)后的前兩位可分為選出兩個(gè)1、選出一個(gè)1和沒(méi)有選出1三種情況,結(jié)合分步乘法、排列、組合的知識(shí)可求得總的數(shù)字個(gè)數(shù),求出符合要求的數(shù)字個(gè)數(shù)后,利用古典概型概率公式即可得解.

由題意從小數(shù)點(diǎn)后的6位數(shù)字中隨機(jī)選取兩個(gè)數(shù)字做為小數(shù)點(diǎn)后的前兩位,可分為以下情況:

①選出兩個(gè)1,共可組成1個(gè)數(shù)字;

②選出一個(gè)1,共可組成個(gè)不同數(shù)字;

③沒(méi)有選出1,共可組成個(gè)不同數(shù)字;

所以共可組成個(gè)不同的數(shù)字;

其中小于等于3.14的數(shù)字有:3.11、3.12、3.14,共3個(gè),則大于3.14的數(shù)字個(gè)數(shù)為18,

故所求概率.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),且曲線處的切線平行于直線

1)求a的值;

2)求函數(shù)的單調(diào)區(qū)間;

3)已知函數(shù)圖象上不同的兩點(diǎn),試比較的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某種新型病毒的傳染能力很強(qiáng),給人們生產(chǎn)和生活帶來(lái)很大的影響,所以創(chuàng)新研發(fā)疫苗成了當(dāng)務(wù)之急.為此,某藥企加大了研發(fā)投入,市場(chǎng)上這種新型冠狀病毒的疫苗的研發(fā)費(fèi)用(百萬(wàn)元)和銷(xiāo)量(萬(wàn)盒)的統(tǒng)計(jì)數(shù)據(jù)如下:

研發(fā)費(fèi)用(百萬(wàn)元)

2

3

6

10

13

14

銷(xiāo)量(萬(wàn)盒)

1

1

2

2.5

4

4.5

1)根據(jù)上表中的數(shù)據(jù),建立關(guān)于的線性回歸方程(用分?jǐn)?shù)表示);

2)根據(jù)所求的回歸方程,估計(jì)當(dāng)研發(fā)費(fèi)用為1600萬(wàn)元時(shí),銷(xiāo)售量為多少?

參考公式:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓短軸的兩個(gè)頂點(diǎn)與右焦點(diǎn)的連線構(gòu)成等邊三角形,兩準(zhǔn)線之間的距離為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)直線與橢圓交于,兩點(diǎn),設(shè)直線,的斜率分別為,.已知.

①求的值;

②當(dāng)的面積最大時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在五面體中,平面平面,.

1)求證:;

2)若,且二面角的大小為,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,圓的方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

1)求圓的極坐標(biāo)方程與直線的直角坐標(biāo)方程;

2)設(shè)直線與圓相交于,兩點(diǎn),求圓,處兩條切線的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,圓的方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

1)求圓的極坐標(biāo)方程與直線的直角坐標(biāo)方程;

2)設(shè)直線與圓相交于,兩點(diǎn),求圓處兩條切線的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓經(jīng)過(guò)點(diǎn)與直線相切,圓心的軌跡為曲線,過(guò)點(diǎn)做直線與曲線交于不同兩點(diǎn),三角形的垂心為點(diǎn).

1)求曲線的方程;

2)求證:點(diǎn)在一條定直線上,并求出這條直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若,求函數(shù)的單調(diào)區(qū)間與極值;

(2)若在區(qū)間上至少存在一點(diǎn),使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案