【題目】如圖,在五面體中,平面,平面,.
(1)求證:;
(2)若,,且二面角的大小為,求二面角的大小.
【答案】(1)證明見詳解;(2).
【解析】
(1)由兩條直線同時(shí)垂直平面得兩直線平行,再利用線面平行的性質(zhì)定理,即可證明線線平行;
(2)如圖,取的中點(diǎn)為,連接,設(shè)與的交點(diǎn)為,連接,利用二面角的知識(shí),求出,連接,再利用線面垂直推導(dǎo)線線垂直和二面角的知識(shí),得出即為所求角,把對(duì)應(yīng)值代入即可得答案.
(1)∵面,面,
∴
又面,面,
∴面
又面,面面,
∴
(2)設(shè)的中點(diǎn)為,連接,
設(shè)與的交點(diǎn)為,連接,
∵面,面,∴,.
∵,∴,.
又面,面,且面面.
∴二面角的平面角.
又在中,,
∴是邊長為2的正三角形,
∴,
∵平面,
∴,
∵,
∴面,
由(1)知,又,,
∴四邊形為正方形,
∴,又,
∴,
∴四邊形為平行四邊形,
∴,
∴面,
∴,
取的中點(diǎn)為,連接,
∴,
∵ ,
∴面,
∴,
∴即為二面角所成的平面角,
∵是邊長為2的正三角形,四邊形為正方形,
∴,,
∴,
∴,
∴二面角的平面角大小為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面上兩定點(diǎn),動(dòng)點(diǎn)滿(為常數(shù)).
(Ⅰ)說明動(dòng)點(diǎn)的軌跡(不需要求出軌跡方程);
(Ⅱ)當(dāng)時(shí),動(dòng)點(diǎn)的軌跡為曲線,過的直線與交于兩點(diǎn),已知點(diǎn),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把方程表示的曲線作為函數(shù)的圖象,則下列結(jié)論正確的是( )
①在R上單調(diào)遞減
②的圖像關(guān)于原點(diǎn)對(duì)稱
③的圖象上的點(diǎn)到坐標(biāo)原點(diǎn)的距離的最小值為3
④函數(shù)不存在零點(diǎn)
A.①③B.①②③C.①③④D.①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求直線與曲線的普通方程;
(2)若直線與曲線交于、兩點(diǎn),點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于定義在上的函數(shù),若存在,使恒成立,則稱為“型函數(shù)”;若存在,使恒成立,則稱為“型函數(shù)”.已知函數(shù).
(1)設(shè)函數(shù).若,且為“型函數(shù)”,求的取值范圍;
(2)設(shè)函數(shù).證明:當(dāng),為“(1)型函數(shù)”;
(3)若,證明存在唯一整數(shù),使得為“型函數(shù)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元五世紀(jì),數(shù)學(xué)家祖沖之估計(jì)圓周率的值的范圍是:,為紀(jì)念數(shù)學(xué)家祖沖之在圓周率研究上的成就,某教師在講授概率內(nèi)容時(shí)要求學(xué)生從小數(shù)點(diǎn)后的6位數(shù)字1,4,1,5,9,2中隨機(jī)選取兩個(gè)數(shù)字做為小數(shù)點(diǎn)后的前兩位(整數(shù)部分3不變),那么得到的數(shù)字大于3.14的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元五世紀(jì),數(shù)學(xué)家祖沖之估計(jì)圓周率的值的范圍是:,為紀(jì)念數(shù)學(xué)家祖沖之在圓周率研究上的成就,某教師在講授概率內(nèi)容時(shí)要求學(xué)生從小數(shù)點(diǎn)后的6位數(shù)字1,4,1,5,9,2中隨機(jī)選取兩個(gè)數(shù)字做為小數(shù)點(diǎn)后的前兩位(整數(shù)部分3不變),那么得到的數(shù)字大于3.14的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的左、右頂點(diǎn)分別為,,上、下頂點(diǎn)分別為,,四邊形的面積為,坐標(biāo)原點(diǎn)O到直線的距離為.
(1)求橢圓C的方程;
(2)若直線l與橢圓C相交于A,B兩點(diǎn),點(diǎn)P為橢圓C上異于A,B的一點(diǎn),四邊形為平行四邊形,探究:平行四邊形的面積是否為定值?若是,求出此定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形,,,平面底面,為的中點(diǎn),是棱上的點(diǎn),,,.
(1)若為的中點(diǎn),求證:面;
(2)若二面角為,設(shè),試確定的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com