已知數(shù)列{an}滿足Sn+an=2n+1,
(1)寫出a1,a2,a3,并推測an的表達(dá)式,(2)用數(shù)學(xué)歸納法證明所得的結(jié)論.
(1)由Sn+an=2n+1得a1=, a2=, a3=, ∴an= 
(2)證明:當(dāng)n=1時(shí)成立. 假設(shè)n=k時(shí)命題成立,即ak=,   
當(dāng)n=k+1時(shí),a1+a2+…ak+ak+1+ak+1=2(k+1)+1,  
∵a1+a2+…ak =2k+1-ak, ∴2ak+1=4-  ,     ∴ak+1=2-成立.
根據(jù)上述知對于任何自然數(shù)n,結(jié)論成立.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

等比數(shù)列中,,,分別是下表第一、二、三行中的某一個(gè)數(shù),且,中的任何兩個(gè)數(shù)不在下表的同一列.
 
第一列
第二列
第三列
第一行
3
2
10
第二行
6
4
14
第三行
9
8
18
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若數(shù)列滿足:,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列,,,……,,……
(1)計(jì)算,,
(2)根據(jù)(1)中的計(jì)算結(jié)果,猜想的表達(dá)式并用數(shù)學(xué)歸納法證明你的猜想。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本小題滿分14分)
已知等差數(shù)列的公差,它的前項(xiàng)和為,若,且,,成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前項(xiàng)和為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列,若點(diǎn)在經(jīng)過點(diǎn)(5,3)的定直線上,則數(shù)列的前9項(xiàng)和=(   )
A.9B.10C.18D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知各項(xiàng)均不相等的等差數(shù)列的前四項(xiàng)和為14,且恰為等比數(shù)列的前三項(xiàng)。
(1)分別求數(shù)列的前n項(xiàng)和
(2)設(shè)為數(shù)列的前n項(xiàng)和,若不等式對一切恒成立,求實(shí)數(shù)的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

數(shù)列的通項(xiàng)公式,則該數(shù)列的前(  )項(xiàng)之和等于 
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

數(shù)列中,已知,對任意的,有成等比數(shù)列,且公比為,則的值為
A. B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列滿足,則數(shù)列的前10項(xiàng)和為
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案