6.已知$\overrightarrow{a}$=(-2,1,3),$\overrightarrow$=(-1,2,1),若$\overrightarrow{a}$⊥($\overrightarrow{a}$+λ$\overrightarrow$),則實(shí)數(shù)λ的值為( 。
A.-2B.-$\frac{14}{3}$C.$\frac{14}{5}$D.2

分析 利用向量垂直與數(shù)量積的關(guān)系即可得出.

解答 解:∵$\overrightarrow{a}$⊥($\overrightarrow{a}$+λ$\overrightarrow$),
∴$\overrightarrow{a}$•($\overrightarrow{a}$+λ$\overrightarrow$)=($\sqrt{14}$)2+λ×(2+2+3)=0,
解得λ=-2.
故選:A.

點(diǎn)評 本題考查了向量垂直與數(shù)量積的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,類似于中國結(jié)的一種刺繡圖案,這些圖案由小正方形構(gòu)成,其數(shù)目越多,圖案越美麗,若按照前4個(gè)圖中小正方形的擺放規(guī)律,設(shè)第n個(gè)圖案所包含的小正方形個(gè)數(shù)記為f(n).
(1)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)的關(guān)系,并通過你所得到的關(guān)系式,求出f(n)的表達(dá)式;
(2)計(jì)算:$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$,$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$+$\frac{1}{f(3)-1}$,$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$+$\frac{1}{f(3)-1}$+$\frac{1}{f(4)-1}$的值,猜想$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$+$\frac{1}{f(3)-1}$+…+$\frac{1}{f(n)-1}$的結(jié)果,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知雙曲線C:$\frac{x^2}{16}$-$\frac{y^2}{4}$=1的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在雙曲線的右支上,且|OP|=2$\sqrt{5}$,且|PF1|=2|PF2|,則△PF1F2的面積為(  )
A.66B.64C.48D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知$\overrightarrow{AB}$=(1,2,-1),$\overrightarrow{CD}$=(x,-2,3),若$\overrightarrow{AB}$⊥$\overrightarrow{CD}$,則x=( 。
A.1B.7C.-1D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求過點(diǎn)(0,4)且與橢圓9x2+4y2=36有相同焦點(diǎn)的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若命題“?x0∈R,使得x02+mx0+2m-3≤0”為假命題,則實(shí)數(shù)m的取值范圍是(2,6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.四邊形ABCD中,若向量$\overrightarrow{AB}$=$\overrightarrow{DC}$,則四邊形ABCD( 。
A.是平行四邊形或梯形B.是梯形
C.不是平行四邊形,也不是梯形D.是平行四邊形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB上的點(diǎn).
(Ⅰ)求證:平面EAC⊥平面PBC;
(Ⅱ)若E是PB的中點(diǎn),若AE與平面ABCD所成角為45°,求三棱錐P-ACE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知△ABC滿足c2-a2-b2-$\sqrt{3}$ab=0,則角C的大小為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步練習(xí)冊答案