【題目】設(shè)函數(shù)

(Ⅰ)當(dāng)時(shí),求處的切線方程;

(Ⅱ)求單調(diào)區(qū)間;

(Ⅲ)若圖象與軸關(guān)于, 兩點(diǎn),求證: .

【答案】(1)切線為;(2)時(shí)單增, 時(shí)單減, 單增;(3)見解析.

【解析】試題分析:(Ⅰ)當(dāng)時(shí) 因此切點(diǎn)為,求出利用點(diǎn)斜式可求切線方程;

(Ⅱ)求導(dǎo),分類討論可得單調(diào)區(qū)間;

(Ⅲ)由(Ⅱ)可知,此時(shí)在在單減, 單增,

設(shè),因此,經(jīng)討論可知本題即證,即證,構(gòu)造函數(shù))討論其性質(zhì)即可得

試題解析:(Ⅰ) , 因此切點(diǎn)為,

,因此,因此切線為.

(Ⅱ)

時(shí)單增,

時(shí)單減, 單增.

(Ⅲ)由(Ⅱ)可知,此時(shí)在在單減, 單增,

設(shè),因此

本題即證,而,∴, .

即證,即證,

設(shè)

因此單增,由于可得,

由于因此

, 單增,

,∴

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一條光線從點(diǎn)(﹣2,﹣3)射出,經(jīng)y軸反射后與圓(x+3)2+(y﹣2)2=1相切,則反射光線所在直線的斜率為(
A.﹣ 或﹣
B.﹣ 或﹣
C.﹣ 或﹣
D.﹣ 或﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)討論函數(shù)的單調(diào)性;

2)若,求函數(shù)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C,所對(duì)的邊分別為a,b,c.已知sinA+sinC=psinB(p∈R).且ac= b2
(Ⅰ)當(dāng)p= ,b=1時(shí),求a,c的值;
(Ⅱ)若角B為銳角,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線 , ),從上的點(diǎn)軸的垂線,交于點(diǎn),再從點(diǎn)軸的垂線,交于點(diǎn).設(shè), .

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)記,數(shù)列的前項(xiàng)和為,求證:

(Ⅲ)若已知),記數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位為綠化環(huán)境,移栽了甲、乙兩種大樹各2株.設(shè)甲、乙兩種大樹移栽的成活率分別為,且各株大樹是否成活互不影響.求移栽的4株大樹中:

1)兩種大樹各成活1株的概率;

2)成活的株數(shù)的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點(diǎn).
(Ⅰ)證明:CD⊥AE;
(Ⅱ)證明:PD⊥平面ABE;
(Ⅲ)求二面角A﹣PD﹣C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°.
(Ⅰ)證明:AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直線A1C與平面BB1C1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解答
(1)解不等式 <0.
(2)若關(guān)于不等式x2﹣4ax+4a2+a≤0的解集為,則實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案