設(shè)函數(shù),
(1)求的最小值;
(2)當(dāng)時,求的最小值.
(1)1;(2)
解析試題分析:(1)因為,所以通過絕對值的基本不等式,即可得到最小值.另外也可以通過分類關(guān)鍵是去絕對值,求出不同類的函數(shù)式的最小值,再根據(jù)這些最小值中的最小值確定所求的結(jié)論.
(2)由(1)求出的的值,所以得到.再根據(jù)柯西不等式即可求得的最小值.同時強調(diào)等號成立的條件.
試題解析:(1)法1: f(x)=|x-4|+|x-3|≥|(x-4)-(x-3)|=1,
故函數(shù)f(x)的最小值為1. m="1." 法2:. x≥4時,f(x)≥1;x<3時,f(x)>1,3≤x<4時,f(x)=1,故函數(shù)f(x)的最小值為1. m="1."
(2)由柯西不等式(a2+b2+c2)(12+22+32)≥(a+2b+3c)2=1故a2+b2+c2≥
當(dāng)且僅當(dāng)時取等號
考點:1.絕對值不等式.2.柯西不等式.3.最值的問題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知不等式(2+x)(3-x)≥0的解集為A,函數(shù)f(x)=(k<0)的定義域為B.
(1)求集合A;
(2)若集合B中僅有一個元素,試求實數(shù)k的值;
(3)若B?A,試求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若不等式的解集為,求實數(shù)a的值;
(2)在(1)的條件下,若存在實數(shù)使成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知實數(shù)組成的數(shù)組滿足條件:
①; ②.
(Ⅰ)當(dāng)時,求,的值;
(Ⅱ)當(dāng)時,求證:;
(Ⅲ)設(shè),且,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com