直線x=t過雙曲線的右焦點且與雙曲線的兩漸近線分別交于A、B兩點,若原點在以AB為直徑的圓內(nèi),則雙曲線離心率的取值范圍是   
【答案】分析:要使原點在以AB為直徑的圓外,只需原點到直線AB的距離|t|小于半徑即可,再根據(jù)離心率與a、b的關(guān)系可得答案.
解答:解:A(t,t),B(t,- t),
要使原點在以AB為直徑的圓外,
只需原點到直線AB的距離|t|小于半徑即可,
所以b>a,
e=,故e∈( ,+∞).
故答案為(,+∞).
點評:本題考查圓錐曲線的性質(zhì)和應(yīng)用,以及圓的有關(guān)知識,解題時要注意公式的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線x=t過雙曲線
x2
a2
-
y2
b2
=1
的右焦點且與雙曲線的兩漸近線分別交于A、B兩點,若原點在以AB為直徑的圓內(nèi),則雙曲線離心率的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x=t過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點且與雙曲線的兩條漸近線分別交于A,B兩點,若原點在以AB為直徑的圓外,則雙曲線離心率的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x=t過雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的右焦點且與雙曲線的兩條漸近線分別交于A,B兩點,若原點在以AB為直徑的圓外,則雙曲線離心率的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京市東城區(qū)(南片)高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

直線x=t過雙曲線-=1(a>0,b>0)的右焦點且與雙曲線的兩條漸近線分別交于A,B兩點,若原點在以AB為直徑的圓外,則雙曲線離心率的取值范圍是    

查看答案和解析>>

同步練習(xí)冊答案