設函數(shù)
(Ⅰ)當時,求曲線處的切線方程;
(Ⅱ)當時,求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)在(Ⅱ)的條件下,設函數(shù),若對于,使成立,求實數(shù)的取值范圍.

(Ⅰ) (Ⅱ)函數(shù)的單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為 (Ⅲ)

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求的單調(diào)區(qū)間和極值;
(2)設,且,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)為常數(shù)),在時取得極值.
(1)求實數(shù)的值;
(2)當時,求函數(shù)的最小值;
(3)當時,試比較的大小并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)當在區(qū)間上的最大值和最小值;
(Ⅱ)若在區(qū)間上,函數(shù)的圖象恒在直線下方,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)處的切線方程為.
(1)求函數(shù)的解析式;
(2)若關于的方程恰有兩個不同的實根,求實數(shù)的值;
(3)數(shù)列滿足,,求的整數(shù)部分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某建筑公司要在一塊寬大的矩形地面(如圖所示)上進行開發(fā)建設,陰影部分為一公共設施建設不能開發(fā),且要求用欄柵隔開(欄柵要求在一直線上),公共設施邊界為曲線f(x)=1-ax2(a>0)的一部分,欄柵與矩形區(qū)域的邊界交于點M、N,交曲線于點P,設P(t,f(t)).
 
(1)將△OMN(O為坐標原點)的面積S表示成t的函數(shù)S(t);
(2)若在t=處,S(t)取得最小值,求此時a的值及S(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某一運動物體,在x(s)時離出發(fā)點的距離(單位:m)是f(x)=x3+x2+2x.
(1)求在第1s內(nèi)的平均速度;
(2)求在1s末的瞬時速度;
(3)經(jīng)過多少時間該物體的運動速度達到14m/s?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)滿足:
①對任意的,,當時,有成立;
②對恒成立.求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知曲線yx3+1,求過點P(1,2)的曲線的切線方程.

查看答案和解析>>

同步練習冊答案