分析 (Ⅰ)由頻率分布直方圖能求出該50名考生成績的眾數(shù)和中位數(shù).
(Ⅱ)由頻率分布直方圖求出后兩組頻率及人數(shù),從而成績在[110,150]的人數(shù)為10人,P(x≥130)=0.0013.由此能求出這50名考生成績在[110,150]內的人130分以上的人數(shù).
(Ⅲ)由題意X的可能取值為0,1,2,分別求出相應的概率,由此能求出X的分布列和E(X).
解答 解:(Ⅰ)由頻率分布直方圖知該50名考生成績的眾數(shù)為:$\frac{70+90}{2}$=80,
中位數(shù)為:70+$\frac{0.5-0.004×20-0.01×20}{0.016}$=83.75.
(Ⅱ)由頻率分布直方圖知后兩組頻率為:(0.006+0.004)×20=0.2,
人數(shù)為0.2×50=10,
則成績在[110,150]的人數(shù)為10人,
P(85-3×15<x<85+3×15)=0.9974,
∴P(x≥130)=$\frac{1-0.9974}{2}$=0.0013.
∴0.0013×105=130人,則該省前功盡棄30名的成績在130分以上,
∴該50人中,130分以上的有0.08×50=4人.
∴這50名考生成績在[110,150]內的人130分以上的人數(shù)有4人.
(Ⅲ)∵從這50名考生成績在[110,150]的人中任意抽取2人,該2人成績排名(從高到后)在全省前130名的人數(shù)記為X,
∴X的可能取值為0,1,2,
P(X=0)=$\frac{{C}_{6}^{2}}{{C}_{10}^{2}}$=$\frac{1}{3}$,
P(X=1)=$\frac{{C}_{6}^{1}{C}_{4}^{1}}{{C}_{10}^{2}}$=$\frac{8}{15}$,
P(X=2)=$\frac{{C}_{4}^{2}}{{C}_{10}^{2}}$=$\frac{2}{15}$,
∴X的分布列為:
X | 0 | 1 | 2 |
P | $\frac{1}{3}$ | $\frac{8}{15}$ | $\frac{2}{15}$ |
點評 本題考查頻率分布直方圖的應用,考查正態(tài)分布的應用,考查離散型隨機變量的分布列和數(shù)學期望的求法,是中檔題,解題時要認真審題,注意排列組合知識的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
每組員工編號 | 1 | 2 | 3 | 4 | 5 |
甲組 | a | 5 | 7 | 9 | b |
乙組 | 5 | 6 | 7 | 8 | 9 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com