7.如圖,在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是A1D1,A1A的中點(diǎn).
(1)求證:BC1∥平面CEF;
(2)在棱A1B1上是否存在點(diǎn)G,使得EG⊥CE?若存在,求A1G的長(zhǎng)度;若不存在,說明理由.

分析 (1)連結(jié)AD1,則FE∥BC1,由此能證明BC1∥平面CEF.
(2)以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出在棱A1B1上存在點(diǎn)G,使得EG⊥CE,且A1G=$\frac{1}{4}$.

解答 證明:(1)連結(jié)AD1,則BC1∥AD1,AD1∥FE,
∴FE∥BC1
∵FE?面CEF,BC1?面CFE,
∴BC1∥平面CEF.
解:(2)以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,
假設(shè)棱A1B1上是存在點(diǎn)G,使得EG⊥CE,設(shè)A1G=λ(0≤λ≤1),
則G(1,λ,1),E($\frac{1}{2}$,0,1),C(0,1,0),
$\overrightarrow{EG}$=($\frac{1}{2},λ,0$),$\overrightarrow{CE}$=($\frac{1}{2},-1,1$),
∵EG⊥CE,∴$\overrightarrow{EG}•\overrightarrow{CE}$=$\frac{1}{2}×\frac{1}{2}-λ=0$,
解得λ=$\frac{1}{4}$.
∴在棱A1B1上存在點(diǎn)G,使得EG⊥CE,且A1G=$\frac{1}{4}$.

點(diǎn)評(píng) 本題考查線面平行的證明,考查使得兩線段垂直的點(diǎn)是否存在的判斷與求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知變量x、y滿足:$\left\{\begin{array}{l}{x≥0}\\{x+3≥2y}\\{y≥2x}\end{array}\right.$,則z=($\sqrt{2}$)x+y的最大值為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)y=$\frac{1}{\sqrt{sin2x}}$的定義域?yàn)椋╧π,kπ+$\frac{π}{2}$)(k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,某動(dòng)物種群數(shù)量1月1日低至700,7月1日高至900,其總量在此兩值之間依正弦型曲線變化.
(1)求出種群數(shù)量y關(guān)于時(shí)間t的函數(shù)表達(dá)式;(其中t以年初以來的月為計(jì)量單位)
(2)估計(jì)當(dāng)年3月1日動(dòng)物種群數(shù)量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=|x-2|-|2x+5|.
(1)解不等式f(x)≤0;
(2)若f(x)-3|x-2|≤m,對(duì)一切實(shí)數(shù)x均成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C的離心率為$\frac{\sqrt{2}}{2}$,A,B分別為左、右頂點(diǎn),F(xiàn)2為其右焦點(diǎn),P是橢圓C上異于A,B的動(dòng)點(diǎn),且$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值為-2.
(1)求橢圓C的方程;
(2)若過左焦點(diǎn)F1的直線交橢圓于M,N兩點(diǎn),求$\overrightarrow{{F}_{2}M}$•$\overrightarrow{{F}_{2}N}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E,F(xiàn),P分別為棱DD1,CD,B1C的中點(diǎn).求四面體B-PEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.y=2sin2x+2sinx+2的值域?yàn)閇$\frac{3}{2}$,6],當(dāng)y取最大值時(shí),x=$\frac{π}{2}$+2kπ,k∈Z;當(dāng)y取最小值時(shí),x=$-\frac{π}{6}$+2kπ,k∈Z,或$-\frac{5}{6}$+2kπ,k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)y=f(x),f′(1)=$\frac{\sqrt{3}}{6}$,則函數(shù)y=f(2x-1)在x=1處的切線的傾斜角為30°.

查看答案和解析>>

同步練習(xí)冊(cè)答案