已知雙曲線C1
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為2,若拋物線C2:x2=2py(p>0)的焦點到雙曲線C1的漣近線的距離是2,則拋物線C2的方程是( 。
A.x2=
8
3
3
y
B.x2=
16
3
3
y
C.x2=8yD.x2=16y
雙曲線C1
x2
a2
-
y2
b2
=1(a>0,b>0)
的離心率為2.
所以
c
a
=2
,即:
a2+b2
a2
=4,所以
b2
a2
=3
;雙曲線的漸近線方程為:
x
a
-
y
b
=0

拋物線C2x2=2py(p>0)的焦點(0,
p
2
)到雙曲線C1的漸近線的距離為2,
所以2=
|
p
2b
|
(
1
a
)
2
+(
1
b
)
2
,因為
b2
a2
=3
,所以p=8.
拋物線C2的方程為x2=16y.
故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)拋物線y2=px的焦點與橢圓
x2
6
+
y2
2
=1的右焦點重合,則p的值為( 。
A.-4B.4C.-8D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線C:y2=4x,O為坐標(biāo)原點,F(xiàn)為C的焦點,P是C上一點.若△OPF是等腰三角形,則|PO|=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,拋物線y2=4x的焦點為F,準(zhǔn)線為l,經(jīng)過F且斜率為
3
的直線與拋物線在x軸上方的部分相交于點A,AK⊥l,垂足為K,則△AKF的面積是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

點P是拋物線y2=4x上一動點,則點P到點(0,1)的距離與到拋物線準(zhǔn)線的距離之和的最小值是( 。
A.0B.
2
2
C.1D.
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知P,Q為拋物線f(x)=
x2
2
上兩點,點P,Q的橫坐標(biāo)分別為4,-2,過P、Q分別作拋物線的切線,兩切線交于點A,則點A的縱坐標(biāo)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線x2=8y的焦點坐標(biāo)是( 。
A.(0,2)B.(0,-2)C.(4,0)D.(-4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線y=2x2上到直線y=4x-5的距離最短的點的坐標(biāo)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,設(shè)點A(x0,y0)為拋物線y2=
x
2
上位于第一象限內(nèi)的一動點,點B(0,y1)在y軸正半軸上,且|OA|=|OB|,直線AB交x軸于點P(x2,0).
(Ⅰ)試用x0表示y1;
(Ⅱ)試用x0表示x2;
(Ⅲ)當(dāng)點A沿拋物線無限趨近于原點O時,求點P的極限坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案