已知P,Q為拋物線f(x)=
x2
2
上兩點(diǎn),點(diǎn)P,Q的橫坐標(biāo)分別為4,-2,過P、Q分別作拋物線的切線,兩切線交于點(diǎn)A,則點(diǎn)A的縱坐標(biāo)為______.
因?yàn)辄c(diǎn)P,Q的橫坐標(biāo)分別為4,-2,
代入拋物線方程得P,Q的縱坐標(biāo)分別為8,2.
由x2=2y,則y=
1
2
x2,所以y′=x,
過點(diǎn)P,Q的拋物線的切線的斜率分別為4,-2,
所以過點(diǎn)P,Q的拋物線的切線方程分別為y=4x-8,y=-2x-2
聯(lián)立方程組解得x=1,y=-4
故點(diǎn)A的縱坐標(biāo)為-4.
故答案為:-4.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線C上任意一點(diǎn)P到兩定點(diǎn)F1(-1,0)與F2(1,0)的距離之和為4.
(1)求曲線C的方程;
(2)設(shè)曲線C與x軸負(fù)半軸交點(diǎn)為A,過點(diǎn)M(-4,0)作斜率為k的直線l交曲線C于B、C兩點(diǎn)(B在M、C之間),N為BC中點(diǎn).
(ⅰ)證明:k·kON為定值;
(ⅱ)是否存在實(shí)數(shù)k,使得F1N⊥AC?如果存在,求直線l的方程,如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線的焦點(diǎn)坐標(biāo)為(2,0),則拋物線的標(biāo)準(zhǔn)方程是(  )
A.y2=4xB.x2=4yC.y2=8xD.x2=8y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系xOy中,拋物線y2=4x的焦點(diǎn)為F,點(diǎn)P在拋物線上,若PF=2,則點(diǎn)P到拋物線頂點(diǎn)O的距離是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

方程mx+ny2=0與mx2+ny2=1,(m,n∈R)且mn≠0在同一坐標(biāo)系中所表示的曲線可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線C1
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為2,若拋物線C2:x2=2py(p>0)的焦點(diǎn)到雙曲線C1的漣近線的距離是2,則拋物線C2的方程是( 。
A.x2=
8
3
3
y
B.x2=
16
3
3
y
C.x2=8yD.x2=16y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知F是拋物線y=x2的焦點(diǎn),M、N是該拋物線上的兩點(diǎn),|MF|+|NF|=3,則線段MN的中點(diǎn)到x軸的距離為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

一個(gè)酒杯的軸截面是拋物線x2=2y(0≤y<15)的一部分,若在杯內(nèi)放入一個(gè)半徑為3的玻璃球,則球的最高點(diǎn)與杯底的距離是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線y2=ax的焦點(diǎn)到準(zhǔn)線的距離為4,則此拋物線的焦點(diǎn)坐標(biāo)為( 。
A.(-2,0)或(2,0)B.(2,0)C.(-2,0)D.(4,0)或(-4,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案