設全集U=R,A={x|
1
x
<0},則∁UA=
 
考點:補集及其運算
專題:集合
分析:求出A中不等式的解集確定出A,根據(jù)全集U=R,求出A的補集即可.
解答: 解:由A中不等式解得:x<0,
∵全集U=R,
∴∁UA={x|x≥0}.
故答案為:{x|x≥0}
點評:此題考查了補集及其運算,熟練掌握補集的定義是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
x,x≥0
x2,x<0
,則f(f(-2))=
 
;若f(x)=-x2+2ax與g(x)=
a
x+1
在區(qū)間[1,2]上是減函數(shù),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

集合A={α|α=kπ+
π
2
,k∈Z},B={α|α=2kπ±
π
2
,k∈Z}的關系是( 。
A、A=BB、A⊆B
C、A?BD、以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U=R,集合A={x|x<1或x>2},集合B={x|x<-3或x≥1},求∁RA∩∁RB,∁R(A∪B).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列關系正確的是( 。
A、a={a}
B、{a}∈{a,b}
C、0∈Φ
D、0∈Z

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

梯形ABCE中,AB∥CE,D是CE中點,BC∥AD,AB=BC=2,∠BAD=60°,沿AD把梯形折成如圖所示四棱錐E-ABCD,
(1)求證:AD⊥BE
(2)若面EAD⊥面ABCD,求二面角A-EB-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+ax+3,求函數(shù)在區(qū)間[-1,1]上的最小值g(a).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在曲線
x2
2
+
y2
6
=1的內(nèi)接△PAB中,PA、PB的傾斜角互補,且∠xOP=60°.
(1)求證:直線AB的斜率為定值;
(2)求△PAB面積最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

己知∠AOB為銳角,|
OA
|=2,|
OB
|=1,OM平分∠AOB,M在線段AB上,點N為線段AB的中點,
OP
=x
OA
+y
OB
,若點P在△MON內(nèi)(含邊界),則在下列關于x,y的式子①y-x≥0; ②0≤x+y≤1; ③2x-y≤0; ④0≤x≤
1
2
,0≤y≤
2
3
中,正確的是
 
 (請?zhí)顚懰姓_式子的番號)

查看答案和解析>>

同步練習冊答案