20.若A(2,1),B(4,2),C(0,1),則$\overrightarrow{AB}$•$\overrightarrow{AC}$的值為-4.

分析 根據(jù)平面向量的坐標(biāo)表示與運(yùn)算,進(jìn)行計(jì)算即可.

解答 解:∵A(2,1),B(4,2),C(0,1),
∴$\overrightarrow{AB}$=(2,1),$\overrightarrow{AC}$=(-2,0),
∴$\overrightarrow{AB}$•$\overrightarrow{AC}$=2×(-2)+1×0=-4.
故答案為:-4.

點(diǎn)評 本題考查了平面向量的坐標(biāo)表示與運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知正方形ABCD的邊長為2,點(diǎn)P、Q分別是邊AB、BC邊上的動(dòng)點(diǎn),且$\overrightarrow{DP}⊥\overrightarrow{AQ}$,則$\overrightarrow{CP}•\overrightarrow{QP}$的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求符合下列條件的圓的方程:
(1)圓心在點(diǎn)(0,2)且與直線x-2y+1=0相切;
(2)圓心在x軸上,且過點(diǎn)(3,$\sqrt{3}$)、(0,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.y=$\frac{cos2x+sin2x}{cos2x-sin2x}$的最小正周期為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.根據(jù)下列條件,求角α的指定的三角函數(shù)值:
(1)已知sin$α=-\frac{\sqrt{3}}{2}$,且α是第三象限角,求cosα和tanα;
(2)已知tanα=-3,且α是第二象限角,求sinα和cosα;
(3)已知cos$α=\frac{12}{13}$,且α是第四象限角,求sinα和tanα;
(4)已知sin$α=-\frac{1}{2}$,α∈R,求cosα和tanα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若二項(xiàng)式x(2x-$\frac{a}{x}$)7的展開式中$\frac{1}{{x}^{2}}$的系數(shù)是84,則實(shí)數(shù)a=( 。
A.2B.-$\root{5}{4}$C.-1D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知y=f(x)為定義在R上奇函數(shù),并且當(dāng)x∈(0,+∞)時(shí),f(x)=2lnx-mx+$\frac{1}{2}$x2
(1)求f(x)的解析式;
(2)若f(x)在[1,2]上單調(diào)遞減,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)y=f(x),x∈D,如果對于定義域D內(nèi)的任意實(shí)數(shù)x,對于給定的非零常數(shù)m,總存在非零常數(shù)T,恒有f(x+T)>mf(x)成立,則稱函數(shù)f(x)是D上的m級類增周期函數(shù),周期為T,若恒有f(x+T)=mf(x)成立,則稱函數(shù)f(x)是D上的m級類周期函數(shù),周期為T.
(1)已知函數(shù)f(x)=-x2+ax是[3,+∞)上的周期為1的2級類增周期函數(shù),求實(shí)數(shù)a的取值范圍;
(2)已知T=1,y=f(x)是[0,+∞)上的m級類周期函數(shù),且y=f(x)是[0,+∞)上的單調(diào)增函數(shù),當(dāng)x∈[0,1)時(shí),f(x)=2x,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={0,1,2},B={x|x2-x-2<0},則A∩B=( 。
A.{0,1,2}B.{1,2}C.{0,1}D.{0}

查看答案和解析>>

同步練習(xí)冊答案