分析 (1)y=$\sqrt{2cosx-1}$的定義域滿足2cosx-1≥0,由此利用弦函數(shù)性質(zhì)能求出結(jié)果.
(2)y=lg(3-4sin2x)的定義域滿足3-4sin2x>0,由此利用正弦函數(shù)性質(zhì)能求出結(jié)果.
解答 解:(1)y=$\sqrt{2cosx-1}$的定義域滿足:
2cosx-1≥0,解得cosx$≥\frac{1}{2}$,
解得2kπ-$\frac{π}{3}$≤x$≤\frac{π}{3}$+2kπ.k∈Z.
∴y=$\sqrt{2cosx-1}$的定義域是{x|2kπ-$\frac{π}{3}$≤x$≤\frac{π}{3}$+2kπ,k∈Z}
(2)y=lg(3-4sin2x)的定義域滿足:3-4sin2x>0,
解得-$\frac{\sqrt{3}}{2}≤sinx≤\frac{\sqrt{3}}{2}$,
解得-$\frac{π}{3}+2kπ≤x≤\frac{π}{3}+2kπ$,或2kπ+$\frac{2π}{3}$≤x≤2kπ+$\frac{4π}{3}$,k∈Z,
∴y=lg(3-4sin2x)的定義域為:{x|-$\frac{π}{3}+kπ≤x≤\frac{π}{3}+kπ$,k∈Z}.
點(diǎn)評 本題考查函數(shù)的定義域的地求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意三角函數(shù)性質(zhì)的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$π | B. | $\frac{3}{4}$π | C. | $\frac{5}{6}$π | D. | π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | c>b>a | B. | c>a>b | C. | a>b>c | D. | a>c>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{40}{21}$ | B. | $\frac{20}{21}$ | C. | $\frac{19}{10}$ | D. | $\frac{20}{19}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | Sn>an | B. | Sn=an | C. | Sn<an | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①②③ | B. | ②①③ | C. | ②③① | D. | ③②① |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-1<x≤3} | B. | {x|2≤x≤3} | C. | {x|x=3} | D. | ∅ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com