分析 根據條件判斷角α的象限,利用同角的三角函數的關系式進行化簡求解即可.
解答 解:∵sinαcosα<0,
∴α是第二或第四象限,
∵sinαtanα<0,
∴α是第二或第三象限,
即α是第二象限,
則由$\sqrt{\frac{1-sinα}{1+sinα}}$+$\sqrt{\frac{1+sinα}{1-sinα}}$=2$\sqrt{2}$
得$\sqrt{\frac{(1-sinα)^{2}}{1-si{n}^{2}α}}$+$\sqrt{\frac{(1+sinα)^{2}}{(1-si{n}^{2}α)}}$=2$\sqrt{2}$,
即$\frac{1-sinα}{|cosα|}$+$\frac{1+sinα}{|cosα|}$=2$\sqrt{2}$,
即$\frac{2}{|cosα|}$=2$\sqrt{2}$,
即|cosα|=$\frac{\sqrt{2}}{2}$,
則cosα=-$\frac{\sqrt{2}}{2}$,則sinα=$\frac{\sqrt{2}}{2}$,
即tanα=$\frac{\frac{\sqrt{2}}{2}}{-\frac{\sqrt{2}}{2}}$=-1.
點評 本題主要考查三角函數的化簡和求解,利用同角的三角函數的關系式是解決本題的關鍵.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{18}{19}$ | B. | $\frac{20}{19}$ | C. | $\frac{19}{20}$ | D. | $\frac{21}{20}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com