分析 (1)求出導(dǎo)數(shù),求出切點(diǎn)和切線的斜率,由點(diǎn)斜式方程,即可得到切線方程;
(2)求出導(dǎo)數(shù),若f(x)是單調(diào)遞增函數(shù),則f′(x)≥0恒成立,分離參數(shù)構(gòu)造函數(shù),求出函數(shù)的最值即可得到.
解答 解:(1)∵f′(x)=ex-2x+2,∵f′(1)=e,即k=e,f(1)=e+1,
∴所求切線方程為y-(e+1)=e(x-1),即ex-y+1=0,
(2)f′(x)=ex-2x+2a,
∵f(x)在R上單調(diào)遞增,
∴f′(x)≥0恒成立,
∴a≥x-$\frac{{e}^{x}}{2}$在R上恒成立,
設(shè)g(x)=≥x-$\frac{{e}^{x}}{2}$,
則g′(x)=1--$\frac{{e}^{x}}{2}$,
令g′(x)=0,解得x=ln2,
當(dāng)x∈(-∞,ln2)時(shí),g′(x)>0,g(x)單調(diào)遞增,
當(dāng)x∈(ln2,+∞)時(shí),g′(x)<0,g(x)單調(diào)遞減,
∴g(x)max=g(ln2)=ln2-1,
∴a≥ln2-1,
∴實(shí)數(shù)a的取值范圍為[ln2-1,+∞)
點(diǎn)評(píng) 本題主要考查導(dǎo)數(shù)的幾何意義以及函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系,綜合考查導(dǎo)數(shù)的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2$ | B. | -$\frac{1}{2}$ | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 減少3.5個(gè)單位 | B. | 增加2個(gè)單位 | C. | 增加3.5個(gè)單位 | D. | 減少2個(gè)單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=|x| | B. | y=x2+1 | C. | y=x3 | D. | y=sinx(x∈[0,$\frac{π}{2}$]) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com