分析 根據(jù)函數(shù)f(x)是R上的奇函數(shù),則有f(0)=0,f(-x)=-f(x),當(dāng)x∈(0,+∞)時(shí),f(x)=x(1+x3)-1,可求x∈(-∞,0)時(shí)的解析式.
解答 解:由題意,函數(shù)f(x)是R上的奇函數(shù),則有f(0)=0,f(-x)=-f(x),
當(dāng)x>0時(shí),f(x)=x(1+x3)-1,
那么:x<0時(shí),則-x>0,有f(-x)=-x(1-x3)-1,
∵f(-x)=-f(x),
∴f(x)=x(1-x3)+1,
故得f(x)在R上的解析式為$f(x)=\left\{{\begin{array}{l}{x(1+{x^3})-1}\\ 0\\{x(1-{x^3})+1}\end{array}}\right.\begin{array}{l}{,x>0}\\{x=0}\\{,x<0}\end{array}$.
點(diǎn)評(píng) 本題考查了分段函數(shù)的解析式的求法,利用了函數(shù)是奇函數(shù)這性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com