若方程
x2
a2
-
y2
a
=1
表示焦點在y軸上的橢圓,則a的取值范圍是( 。
分析:根據(jù)方程
x2
a2
-
y2
a
=1
表示焦點在y軸上的橢圓,可知-a>a2>0,從而可求a的取值范圍.
解答:解:由題意,∵方程
x2
a2
-
y2
a
=1
x2
a2
+
y2
-a
=1
,
它表示焦點在y軸上的橢圓
∴-a>a2>0,
∴-1<a<0,
故選A.
點評:本題的考點是橢圓的標準方程,關(guān)鍵是理解焦點在y軸上的橢圓時,幾何量之間的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P1(x1,y1),P1(x2,y2),…,Pn(xn,yn)(n≥3,n∈N) 是二次曲線C上的點,且a1=|OP1|2,a2=|OP2|2,…,an=|OPn|2構(gòu)成了一個公差為d(d≠0) 的等差數(shù)列,其中O是坐標原點.記Sn=a1+a2+…+an
(1)若C的方程為
x2
9
-y2=1,n=3.點P1(3,0) 及S3=162,求點P3的坐標;(只需寫出一個)
(2)若C的方程為y2=2px(p≠0).點P1(0,0),對于給定的自然數(shù)n,證明:(x1+p)2,(x2+p)2,…,(xn+p)2成等差數(shù)列;
(3)若C的方程為
x2
a2
+
y2
b2
=1
(a>b>0).點P1(a,0),對于給定的自然數(shù)n,當(dāng)公差d變化時,求Sn的最小值.
符號意義 本試卷所用符號 等同于《實驗教材》符號
向量坐標
a
={x,y}
a
=(x,y)
正切 tg tan

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+y2=1
(a>0)的離心率為
3
2

(1)求橢圓的方程;
(2)設(shè)直線l與橢圓相交于不同的兩點A、B,已知點A的坐標為(-a,0),若|AB|=
4
2
5
,求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)設(shè)橢圓C:
x2
a2
+y2=1(a>0)
的兩個焦點是F1(-c,0)和F2(c,0)(c>0),且橢圓C上的點到焦點F2的最短距離為
3
-
2

(1)求橢圓的方程;
(2)若直線l:y=kx+m(k≠0)與橢圓C交于不同的兩點M、N,線段MN垂直平分線恒過點A(0,-1),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•揭陽一模)如圖,設(shè)點F1(-c,0)、F2(c,0)分別是橢圓C:
x2
a2
+y2=1(a>1)
的左、右焦點,P為橢圓C上任意一點,且
PF1
PF2
最小值為0.
(1)求橢圓C的方程;
(2)若動直線l1,l2均與橢圓C相切,且l1∥l2,試探究在x軸上是否存在定點B,點B到l1,l2的距離之積恒為1?若存在,請求出點B坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2a2
+y2=1(a>1),
(1)若橢圓C的上頂點為A,右焦點為F,直線AF與圓M:(x-3)2+(y-1)2=3相切.求橢圓C的方程.
(2)若Rt△ABC以A(0,1)為直角頂點,邊AB、BC與橢圓交于兩點B、C,求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案