橢圓=1上的點(diǎn)P到焦點(diǎn)F1的距離為2,QPF1的中點(diǎn),則|OQ|的值為

A.4                       B.2                       C.8                       D.

解析:∵a=5,2a=10,|PF1|=2,

∴|PF2|=8.

在△PF1F2中,OQ為中位線,

即|OQ|=|PF2|=4.

答案:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

利用焦半徑公式|PF1|=a+ex0,|PF2|=a-ex0(a、e分別是橢圓長半軸長及離心率,x0為P點(diǎn)橫坐標(biāo)),在橢圓+=1上求一點(diǎn)M,使它到左焦點(diǎn)的距離是它到右焦點(diǎn)距離的兩倍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

利用焦半徑公式|PF1|=a+ex0,|PF2|=a-ex0(a、e分別是橢圓長半軸長及離心率,x0為P點(diǎn)橫坐標(biāo)),在橢圓=1上求一點(diǎn)M,使它到左焦點(diǎn)的距離是它到右焦點(diǎn)距離的兩倍.

查看答案和解析>>

同步練習(xí)冊答案