以橢圓
x2
8
+
y2
5
=1的焦點為頂點,以橢圓的頂點為焦點的雙曲線的離心率為( 。
A、
2
26
13
B、
2
6
3
C、
8
3
D、
13
8
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:確定橢圓的焦點與頂點,從而可得雙曲線的頂點與焦點,進而可求雙曲線的離心率.
解答: 解:由題意,橢圓
x2
8
+
y2
5
=1的焦點坐標(biāo)為(±
3
,0),∴雙曲線的頂點坐標(biāo)為(±
3
,0),
∵雙曲線以橢圓的頂點為焦點
∴雙曲線的焦點為(±
8
,0),
∴雙曲線的離心率為e=
c
a
=
8
3
=
2
6
3

故選:B.
點評:本題考查橢圓,雙曲線的幾何性質(zhì),考查學(xué)生的計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一輛汽車在筆直的公路上變速行駛,設(shè)汽車在時刻t的速度為v(t)=-t2+4,(0≤t≤2)(t的單位:h,v的單位:km/h)則這輛車行駛的路程是
 
km.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式(x-1)2>ax2有且僅有三個整數(shù)解,則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列關(guān)于向量的命題中,
a
b
=
b
a
;
a
0
,
b
0
,
c
0
,則(
a
b
)•
c
=
a
•(
b
c
);
a
b
=
b
c
a
0
,
b
0
,則
a
=
c
;
④若
a
0
,
b
0
,且
a
b
,則|
a
+
b
|=|
a
-
b
|.
正確命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角三角形ABC中,
AB
=(2,3),
AC
=(1,k),求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列空間幾何體能較合適作為平面等邊三角形的類比對象的是( 。
A、正四棱錐B、正方體
C、正四面體D、球

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x+1
x2+2x+1
x≥0
x<0
的圖象和函數(shù)g(x)=ex的圖象的交點個數(shù)是(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以橢圓
x2
8
+
y2
5
=1的焦點為頂點,以橢圓的頂點為焦點的雙曲線的漸近線方程為( 。
A、y=±
3
5
x
B、y=±
5
3
x
C、y=±
15
5
x
D、y=±
15
3
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l和雙曲線
x2
9
-
y2
4
=1相交于A、B兩點,線段AB的中點為M(與坐標(biāo)原點O不重合),設(shè)直線l的斜率為k1(k1≠0),直線OM的斜率為k2,則k1k2=( 。
A、
2
3
B、-
2
3
C、-
4
9
D、
4
9

查看答案和解析>>

同步練習(xí)冊答案