19.若雙曲線$E:\frac{x^2}{9}-\frac{y^2}{16}=1$的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在雙曲線E上,且PF1=3,則PF2等于9.

分析 利用雙曲線方程求出a,利用雙曲線定義轉(zhuǎn)化求解即可.

解答 解:雙曲線$E:\frac{x^2}{9}-\frac{y^2}{16}=1$的左、右焦點(diǎn)分別為F1,F(xiàn)2,a=3,b=4,c=5,
點(diǎn)P在雙曲線E上,且PF1=3,可得P在雙曲線的左支上,
可得|PF2|-|PF1|=6,可得|PF2|=|PF1|+6,
PF2=9.
故答案為:9.

點(diǎn)評(píng) 本題考查雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,雙曲線的定義的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.一個(gè)口袋中裝有大小形狀完全相同的n+3個(gè)乒乓球,其中有1個(gè)乒乓球上標(biāo)有數(shù)字0,有2個(gè)乒乓球上標(biāo)有數(shù)字2,其余n個(gè)乒乓球上均標(biāo)有數(shù)字3(n∈N*),若從這個(gè)口袋中隨機(jī)地摸出2個(gè)乒乓球,恰有一個(gè)乒乓球上標(biāo)有數(shù)字2的概率是$\frac{8}{15}$.
(Ⅰ)求n的值;
(Ⅱ)從口袋中隨機(jī)地摸出2個(gè)乒乓球,設(shè)ξ表示所摸到的2個(gè)乒乓球上所標(biāo)數(shù)字之和,求ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知sinαcosβ=1,則cos(α+β)的值是( 。
A.0B.1C.-1D.±1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知數(shù)列{an}滿(mǎn)足a1=3,an+1=an2+2an,n∈N*,設(shè)bn=log2(an+1).
(I)求{an}的通項(xiàng)公式;
(II)求證:1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{_{n}-1}$<n(n≥2);
(III)若${2^{c_n}}$=bn,求證:2≤${(\frac{{{c_{n+1}}}}{c_n})^n}$<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.命題“?x0∈R,${x_0}^2-{x_0}-1>0$”的否定是( 。
A.?x∈R,x2-x-1≤0B.?x∈R,x2-x-1>0
C.?x0∈R,${x_0}^2-{x_0}-1≤0$D.?x0∈R,${x_0}^2-{x_0}-1≥0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=2,a2=8,Sn+1+4Sn-1=5Sn(n≥2),Tn是數(shù)列{log2an}的前n項(xiàng)和Tn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求Tn;
(3)求滿(mǎn)足$(1-\frac{1}{T_2})(1-\frac{1}{T_3})…(1-\frac{1}{T_n})>\frac{1011}{2014}$的最大正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若A=60°,△ABC面積為$\sqrt{3}$,則$\frac{{4{b^2}+4{c^2}-3{a^2}}}{b+c}$的最小值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)AB是雙曲線Γ的實(shí)軸,點(diǎn)C在Γ上,且∠CAB=$\frac{π}{4}$,若AB=4,BC=$\sqrt{26}$,則雙曲線的焦距是4$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知α為第二象限的角,sinα=$\frac{1}{2}$,β為第一象限的角,cosβ=$\frac{3}{5}$. 則tan(2α-β)的值為( 。
A.$\frac{{48+25\sqrt{3}}}{39}$B.$\frac{{48-25\sqrt{3}}}{39}$C.$-\frac{{48+25\sqrt{3}}}{39}$D.$-\frac{{48-25\sqrt{3}}}{39}$

查看答案和解析>>

同步練習(xí)冊(cè)答案