9.已知等差數(shù)列{an}中,a1=1,且a1,a2,a4+2成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式及其前n項(xiàng)和Sn;
(2)設(shè)${b_n}={2^{{{({-1})}^n}{a_n}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (1)設(shè)等差數(shù)列{an}的公差為d,由a1=1,且a1,a2,a4+2成等比數(shù)列.可得:${a}_{2}^{2}$=a1•(a4+2),即(1+d)2=1×(1+3d+2),解得d.經(jīng)過(guò)驗(yàn)證可得d,再利用等差數(shù)列的通項(xiàng)公式與求和公式即可得出.
(2)${b_n}={2^{{{({-1})}^n}{a_n}}}$=${2}^{(-1)^{n}(2n-1)}$.當(dāng)n為偶數(shù)時(shí),$\frac{_{n+2}}{_{n}}$=$\frac{{2}^{2n+3}}{{2}^{2n-1}}$=16.當(dāng)n為奇數(shù)時(shí),$\frac{_{n+2}}{_{n}}$=$\frac{{2}^{-(2n+3)}}{{2}^{-(2n-1)}}$=$\frac{1}{16}$.可得數(shù)列{bn}的奇數(shù)項(xiàng)是以$\frac{1}{2}$為首項(xiàng),$\frac{1}{16}$為公比的等比數(shù)列;偶數(shù)項(xiàng)是以8為首項(xiàng),16為公比的等比數(shù)列.利用求和公式即可得出.

解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,∵a1=1,且a1,a2,a4+2成等比數(shù)列.
∴${a}_{2}^{2}$=a1•(a4+2),即(1+d)2=1×(1+3d+2),解得d=2或-1.
其中d=-1時(shí),a2=0,舍去.
∴d=2,可得an=1+2(n-1)=2n-1.
Sn=$\frac{n(1+2n-1)}{2}$=n2
(2)${b_n}={2^{{{({-1})}^n}{a_n}}}$=${2}^{(-1)^{n}(2n-1)}$.
∴當(dāng)n為偶數(shù)時(shí),$\frac{_{n+2}}{_{n}}$=$\frac{{2}^{2n+3}}{{2}^{2n-1}}$=16.當(dāng)n為奇數(shù)時(shí),$\frac{_{n+2}}{_{n}}$=$\frac{{2}^{-(2n+3)}}{{2}^{-(2n-1)}}$=$\frac{1}{16}$.
∴數(shù)列{bn}的奇數(shù)項(xiàng)是以$\frac{1}{2}$為首項(xiàng),$\frac{1}{16}$為公比的等比數(shù)列;偶數(shù)項(xiàng)是以8為首項(xiàng),16為公比的等比數(shù)列.
∴數(shù)列{bn}的前2n項(xiàng)和T2n=(b1+b3+…+b2n-1)+(b2+b4+…+b2n
=$\frac{\frac{1}{2}×[1-(\frac{1}{16})^{n}]}{1-\frac{1}{16}}$+$\frac{8×(1{6}^{n}-1)}{16-1}$
=$\frac{8}{15}$(16n-16-n).

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的定義通項(xiàng)公式與求和公式及其性質(zhì)、分組求和方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.己知某幾何體的三視圖如圖所示,則其表面積為(  )
A.6+4$\sqrt{2}$B.4+4$\sqrt{2}$C.2D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知下列命題:
①?x∈(0,2),3x>x3的否定是:?x∈(0,2),3x≤x3;
②若f(x)=2x-2-x,則?x∈R,f(-x)=-f(x);
③若f(x)=x+$\frac{1}{x+1}$,?x0∈(0,+∞),f(x0)=1;
④在△ABC中,若A>B,則sin A>sin B.
其中真命題是①②④.(將所有真命題序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在三棱柱ABC-A1B1C1中,側(cè)面ABB1A1為矩形,AB=2,AA1=2$\sqrt{2}$,D是AA1的中點(diǎn),BD與AB1交于點(diǎn)O,且OC⊥平面ABB1A1
(Ⅰ)證明:平面AB1C⊥平面BCD;
(Ⅱ)若G為B1C上的一點(diǎn),A1G∥平面BCD,證明:G為B1C的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖是某班甲、乙兩位同學(xué)在5次階段性檢測(cè)中的數(shù)學(xué)成績(jī)(百分制)的莖葉圖,甲、乙兩位同學(xué)得分的中位數(shù)分別為x1,x2,得分的方差分別為y1,y2,則下列結(jié)論正確的是(  )
A.x1<x2,y1<y2B.x1<x2,y1>y2C.x1>x2,y1>y2D.x1>x2,y1<y2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知命題“若x>1,則2x<3x”,則在它的逆命題、否命題、逆否命題中,正確命題的個(gè)數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知向量$\overrightarrow{a}$=(x,1),$\overrightarrow$=(2,-1),在區(qū)間[-1,1]上隨機(jī)地取一個(gè)數(shù)x,則事件“$\overrightarrow{a}$•$\overrightarrow$≥0”發(fā)生的概率為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.一口袋中裝有大小相同的2個(gè)白球和4個(gè)黑球,每次從袋中任意摸出一個(gè)球,若采取不放回抽樣方式,從中摸出兩個(gè)球,則摸得白球的個(gè)數(shù)X的方差D(X)=$\frac{16}{45}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.學(xué)生會(huì)為了調(diào)查學(xué)生對(duì)2018年俄羅斯世界杯的關(guān)注是否與性別有關(guān),抽樣調(diào)查100人,得到如下數(shù)據(jù):
不關(guān)注關(guān)注總計(jì)
男生301545
女生451055
總計(jì)7525100
根據(jù)表中數(shù)據(jù),通過(guò)計(jì)算統(tǒng)計(jì)量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,并參考一下臨界數(shù)據(jù):
P(K2>k00.500.400.250.150.100.050.0250.0100.0050.001
  k00.4550.7081.3232.0722.7063.845.0246.6357.87910.83
若由此認(rèn)為“學(xué)生對(duì)2018年俄羅斯年世界杯的關(guān)注與性別有關(guān)”,則此結(jié)論出錯(cuò)的概率不超過(guò)( 。
A.0.10B.0.05C.0.025D.0.01

查看答案和解析>>

同步練習(xí)冊(cè)答案