S
n是數(shù)列{a
n}的前n項和,則“S
n是關于n的二次函數(shù)”是“數(shù)列{a
n}為等差數(shù)列”的( )
A.充分不必要條件 | B.必要不充分條件 |
C.充分必要條件 | D.既不充分也不必要條件 |
若S
n是關于n的二次函數(shù),則設為S
n=an
2+bn+c(a≠0),則當n≥2時,有a
n=S
n-S
n-1=2an+b-a,當n=1時,S
1=a+b+c,只有當c=0時,數(shù)列{a
n}才是等差數(shù)列;若數(shù)列{a
n}為等差數(shù)列,則S
n=na
1+
n,當d≠0時為二次函數(shù),當d=0時,為一次函數(shù),所以“S
n是關于n的二次函數(shù)”是“數(shù)列{a
n}為等差數(shù)列”的既不充分也不必要條件.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知等差數(shù)列
的公差大于0,且
是方程
的兩根,數(shù)列
的前n項的和為
,且
.
(1)求數(shù)列
,
的通項公式;
(2)記
,求證:
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知二次函數(shù)f(x)=px
2+qx(p≠0),其導函數(shù)為f'(x)=6x-2,數(shù)列{a
n}的前n項和為S
n,點(n,S
n)(n∈N
*)均在函數(shù)y=f(x)的圖象上.
(1)求數(shù)列{a
n}的通項公式.
(2)若c
n=
(a
n+2),2b
1+2
2b
2+2
3b
3+…+2
nb
n=c
n,求數(shù)列{b
n}的通項公式.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如果正整數(shù)a的各位數(shù)字之和等于6,那么稱a為“好數(shù)”(如:6,24,2 013等均為“好數(shù)”),將所有“好數(shù)”從小到大排成一列a
1,a
2,a
3,…,若a
n=2 013,則n=( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖所示,當n≥2時,將若干點擺成三角形圖案,每條邊(包括兩個端點)有n個點,若第n個圖案中總的點數(shù)記為a
n,則a
1+a
2+a
3+…+a
10=( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設等差數(shù)列{
an}的前
n項和是
Sn,若-
am<
a1<-
am+1(
m∈N
*,且
m≥2),則必定有( )
A.Sm>0且Sm+1<0 | B.Sm<0且Sm+1>0 | C.Sm>0且Sm+1>0 | D.Sm<0且Sm+1<0 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
在等差數(shù)列{
an}中,
a2=5,
a6=21,記數(shù)列
的前
n項和為
Sn,若
S2n+1-
Sn≤
對
n∈N
*恒成立,則正整數(shù)
m的最小值為________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
數(shù)列
是公差不為零的等差數(shù)列,并且
是等比數(shù)列
的相鄰三項,若
,則
等于( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知等差數(shù)列{an}滿足:a2=5,a4+a6=22,數(shù)列{bn}滿足b1+2b2+…
+2n-1bn=nan,設數(shù)列{bn}的前n項和為Sn.
(1)求數(shù)列{an},{bn}的通項公式;
(2)求滿足13<Sn<14的n的集合.
查看答案和解析>>