【題目】已知圓心在軸上的圓過點(diǎn)和,圓的方程為.
(1)求圓的方程;
(2)由圓上的動(dòng)點(diǎn)向圓作兩條切線分別交軸于兩點(diǎn),求的取值范圍.
【答案】(1);(2).
【解析】試題分析: (1)建立方程組 圓的方程為;(2)設(shè)圓上的動(dòng)點(diǎn)的坐標(biāo)為 . 設(shè)的方程為: 點(diǎn)的坐標(biāo)為,同理可得點(diǎn)的坐標(biāo)為 ,因?yàn)?/span>是圓的切線,所以滿足
即是方程的兩根
.設(shè),則 知在上是增函數(shù),在上是減函數(shù)
以的取值范圍為.
試題解析: (1)設(shè)圓的方程為: ,
因?yàn)閳A過點(diǎn)和,
所以
解得.
所以圓的方程為
(2)設(shè)圓上的動(dòng)點(diǎn)的坐標(biāo)為,則,
即,解得,
由圓和圓的方程可知,過點(diǎn)向圓所作的兩條切線的斜率必存在,
設(shè)的方程為: ,則點(diǎn)的坐標(biāo)為,
同理可得點(diǎn)的坐標(biāo)為,所以,
因?yàn)?/span>是圓的切線,所以滿足,
即是方程的兩根,
即,所以,
因?yàn)?/span>,所以
設(shè),則.
由,可知在上是增函數(shù),在上是減函數(shù),
所以,
,
所以的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|0<ax﹣1≤5},B={x|﹣ <x≤2},
(1)若a=1,求A∪B;
(2)若A∩B=且a>0,求實(shí)數(shù)a的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有垣厚五尺,兩鼠對穿.大鼠日一尺,小鼠亦日一尺.大鼠日自倍,小鼠日自半.問幾何日相逢?各穿幾何?”,翻譯成今天的話是:一只大鼠和一只小鼠分別從的墻兩側(cè)面對面打洞,已知第一天兩鼠都打了一尺長的洞,以后大鼠每天打的洞長是前一天的2倍,小鼠每天打的洞長是前一天的一半,已知墻厚五尺,問兩鼠幾天后相見?相見時(shí)各打了幾尺長的洞?設(shè)兩鼠x 天后相遇(假設(shè)兩鼠每天的速度是勻速的),則x=( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知X和Y是兩個(gè)分類變量,由公式K2= 算出K2的觀測值k約為7.822根據(jù)下面的臨界值表可推斷( )
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A.推斷“分類變量X和Y沒有關(guān)系”犯錯(cuò)誤的概率上界為0.010
B.推斷“分類變量X和Y有關(guān)系”犯錯(cuò)誤的概率上界為0.010
C.有至少99%的把握認(rèn)為分類變量X和Y沒有關(guān)系
D.有至多99%的把握認(rèn)為分類變量X和Y有關(guān)系
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】電視傳媒公司為了解某地區(qū)電視觀眾對里約奧運(yùn)會(huì)的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:
將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”。已知“體育迷”中有10名女性。
(1)試求“體育迷”中的男性觀眾人數(shù);
(2)據(jù)此資料完成列聯(lián)表,你是否認(rèn)為“體育迷”與性別有關(guān)?
非體育迷 | 體育迷 | 合計(jì) | |
男 | |||
女 | |||
合計(jì) |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
臨界值表供參考參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1:已知正方形ABCD的邊長是2,有一動(dòng)點(diǎn)M從點(diǎn)B出發(fā)沿正方形的邊運(yùn)動(dòng),路線是B→C→D→A.設(shè)點(diǎn)M經(jīng)過的路程為x,△ABM的面積為S.
(1)求函數(shù)S=f(x)的解析式及其定義域;
(2)在圖2中畫出函數(shù)S=f(x)的圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知c>0,命題p:函數(shù)在R上單調(diào)遞減,命題q:不等式的解集是R,若為真命題, 為假命題,求c的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某創(chuàng)業(yè)團(tuán)隊(duì)擬生產(chǎn)兩種產(chǎn)品,根據(jù)市場預(yù)測, 產(chǎn)品的利潤與投資額成正比(如圖1),產(chǎn)品的利潤與投資額的算術(shù)平方根成正比(如圖2).(注: 利潤與投資額的單位均為萬元)
(1)分別將兩種產(chǎn)品的利潤、表示為投資額的函數(shù);
(2)該團(tuán)隊(duì)已籌集到10 萬元資金,并打算全部投入兩種產(chǎn)品的生產(chǎn),問:當(dāng)產(chǎn)品的投資額為多少萬元時(shí),生產(chǎn)兩種產(chǎn)品能獲得最大利潤,最大利潤為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com