已知函數(shù)
(1)用定義證明上單調(diào)遞增;
(2)若上的奇函數(shù),求的值;
(3)若的值域?yàn)镈,且,求的取值范圍

(1)詳見解析;(2);(3)

解析試題分析:(1)在R上任取兩個(gè)實(shí)數(shù),且,然后用作差法比較的大小,再根據(jù)單調(diào)性定義判斷單調(diào)性。(2)根據(jù),列出方程,根據(jù)對(duì)應(yīng)系數(shù)相等解出m.。或利用特殊值法如,也可解出m。(3)根據(jù)指數(shù)函數(shù)的值域大于零,可導(dǎo)出的值域,因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/99/5/fzj0e1.png" style="vertical-align:middle;" />,
試題解析:(1)解: 設(shè)                                  1分
           3分

 即                    5分
上單調(diào)遞增                          6分
(2)上的奇函數(shù)  8分

                                                  10分
(用必須檢驗(yàn),不檢驗(yàn)扣2分)
(3)由
                                    12分


的取值范圍是                                   15分
考點(diǎn):函數(shù)的單調(diào)性,奇偶性和求值域

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是偶函數(shù)
(1)求k的值;
(2)若函數(shù)的圖象與直線沒有交點(diǎn),求b的取值范圍;
(3)設(shè),若函數(shù)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)二次函數(shù),對(duì)任意實(shí)數(shù),有恒成立;數(shù)列滿足.
(1)求函數(shù)的解析式和值域;
(2)證明:當(dāng)時(shí),數(shù)列在該區(qū)間上是遞增數(shù)列;
(3)已知,是否存在非零整數(shù),使得對(duì)任意,都有
 恒成立,若存在,求之;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)當(dāng)時(shí),求函數(shù)的定義域;
(2)若函數(shù)的定義域?yàn)镽,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已函數(shù)是定義在上的奇函數(shù),在上時(shí)
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(I)若函數(shù)為奇函數(shù),求實(shí)數(shù)的值;
(II)若對(duì)任意的,都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的定義域;
(2)若函數(shù)上單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)若,是否存在,使為偶函數(shù),如果存在,請(qǐng)舉例并證明你的結(jié)論,如果不存在,請(qǐng)說明理由;
(2)若,求上的單調(diào)區(qū)間;
(3)已知,對(duì),,有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),恒過定點(diǎn) (3,2).
(1)求實(shí)數(shù)
(2)在(1)的條件下,將函數(shù)的圖象向下平移1個(gè)單位,再向左平移個(gè)單位后得到函數(shù),設(shè)函數(shù)的反函數(shù)為,求的解析式;
(3)對(duì)于定義在[1,9]的函數(shù),若在其定義域內(nèi),不等式恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案