【題目】已知函數(shù),.
(1)當(dāng)時,求的單調(diào)增區(qū)間;
(2)令.
①當(dāng)時,若函數(shù)恰有兩個不同的零點(diǎn),求的值;
②當(dāng)時,若的解集為,且中有且僅有一個整數(shù),求實數(shù)b的取值范圍.
【答案】(1)單調(diào)增區(qū)間是和; (2)① .
【解析】
(1)先求導(dǎo)數(shù),再解不等式得結(jié)果,(2)①根據(jù)題意得極值點(diǎn)函數(shù)值為零,解方程即得結(jié)果,②研究函數(shù)先分析中有解的必要條件,即最小值小于零,再結(jié)合圖象確定有且僅有一個整數(shù)的條件,即得結(jié)果.
(1)當(dāng)時,,.
令,解得或,
所以的單調(diào)增區(qū)間是和.
(2)因為.
①,令,得或,
因為函數(shù)有兩個不同的零點(diǎn),所以或.
當(dāng)時,得,不合題意,舍去;
當(dāng)時,代入得,
即,所以.
②當(dāng)時,因為,所以,
設(shè),則,
當(dāng)時,因為,所以在上遞增,且,
所以在上,,不合題意;
當(dāng)時,令,得,
所以在遞增,在遞減,
所以,
要使有解,首先要滿足,解得. ①
又因為,,
要使的解集中只有一個整數(shù),則
即 解得. ②
設(shè),則,
當(dāng)時,,遞增;當(dāng)時,,遞減.
所以,所以,
所以由①和②得,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中的說法正確的是( )
A. 若向量,則存在唯一的實數(shù)使得;
B. 命題“若,則”的否命題為“若,則”;
C. 命題“,使得”的否定是:“,均有”;
D. 命題“在中,是的充要條件”的逆否命題為真命題.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某少數(shù)民族的刺繡有著悠久的歷史,如圖4①,②,③,④為她們刺繡最簡單的四個圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個圖形包含f(n)個小正方形.
(1)求出f(5)的值;
(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出f(n)的表達(dá)式;
(3)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某地村莊P與村莊O的距離為千米,從村莊O出發(fā)有兩條道路,經(jīng)測量,的夾角為,OP與的夾角滿足(其中),現(xiàn)要經(jīng)過P修一條直路分別與道路交匯于兩點(diǎn),并在處設(shè)立公共設(shè)施.
(1)已知修建道路的單位造價分別為2m元/千米和m元/千米,若兩段道路的總造價相等,求此時點(diǎn)之間的距離;
(2)考慮環(huán)境因素,需要對段道路進(jìn)行翻修,段的翻修單價分別為n元/千米和元/千米,要使兩段道路的翻修總價最少,試確定點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中裝有3個白球,4個黑球,從中任取3個球,則
①恰有1個白球和全是白球;
②至少有1個白球和全是黑球;
③至少有1個白球和至少有2個白球;
④至少有1個白球和至少有1個黑球.
在上述事件中,是互斥事件但不是對立事件的為( )
A.②B.①C.③D.④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,,,分別是,,的中點(diǎn).
(1)求異面直線與所成角的大;
(2)棱上是否存在點(diǎn),使平面?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x﹣a)2+(y﹣b)2=1(a>0)關(guān)于直線3x﹣2y=0對稱,且與直線3x﹣4y+1=0相切.
(1)求圓C的方程;
(2)若直線l:y=kx+2與圓C交于M,N兩點(diǎn),是否存在直線l,使得(O為坐標(biāo)原點(diǎn))若存在,求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量(單位:噸)對價格(單位:千元/噸)和利潤的影響,對近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價格統(tǒng)計如下表:
1 | 2 | 3 | 4 | 5 | |
8 | 6 | 5 | 4 | 2 |
已知和具有線性相關(guān)關(guān)系.
(1)求關(guān)于的線性回歸方程;
(2)若每噸該農(nóng)產(chǎn)品的成本為2.2千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)測當(dāng)年產(chǎn)量為多少噸時,年利潤取到最大值?
參考公式: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com