【題目】某種產(chǎn)品的廣告費支出x與銷售額y(單位:百萬元)之間有如下對應:

X

2

4

5

6

8

y

30

40

60

50

70


(1)求回歸直線方程.
(2)回歸直線必經(jīng)過的一點是哪一點?

【答案】
(1)解:∵ = =5, = =50,

∴b= =6.5

∴a= ﹣b =50﹣6.5×5=17.5,

∴回歸直線方程為y=6.5x+17.5.


(2)解:∵線性回歸方程一定過這組數(shù)據(jù)的樣本中心點,

∴線性回歸方程表示的直線必經(jīng)過( , ),

故此回歸直線必經(jīng)過的一點是(50,6.5).


【解析】(1)先做出橫標和縱標的平均數(shù),得到這組數(shù)據(jù)的樣本中心點,利用最小二乘法做出線性回歸方程的系數(shù),再求出a的值,即可得到線性回歸方程.(2)根據(jù)線性回歸方程一定過這組數(shù)據(jù)的樣本中心點,得到線性回歸方程表示的直線必經(jīng)過( , ),得到結(jié)果.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=sin(2x+θ)+ cos(2x+θ),(|θ|< )的圖象關(guān)于點 對稱,則f(x)的增區(qū)間(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我市某礦山企業(yè)生產(chǎn)某產(chǎn)品的年固定成本為萬元,每生產(chǎn)千件該產(chǎn)品需另投入萬元,設(shè)該企業(yè)年內(nèi)共生產(chǎn)此種產(chǎn)品千件,并且全部銷售完,每千件的銷售收入為萬元,且

(Ⅰ)寫出年利潤(萬元)關(guān)于產(chǎn)品年產(chǎn)量(千件)的函數(shù)關(guān)系式;

(Ⅱ)問:年產(chǎn)量為多少千件時,該企業(yè)生產(chǎn)此產(chǎn)品所獲年利潤最大?

注:年利潤=年銷售收入-年總成本.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某特色餐館開通了美團外賣服務,在一周內(nèi)的某特色菜外賣份數(shù)(份)與收入(元)之間有如下的對應數(shù)據(jù):

外賣份數(shù)(份)

2

4

5

6

8

收入(元)

30

40

60

50

70

(1)畫出散點圖;

(2)求回歸直線方程;

(3)據(jù)此估計外賣份數(shù)為12份時,收入為多少元.

注:①參考公式:線性回歸方程系數(shù)公式, ;

②參考數(shù)據(jù): ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是某學校學生體重的頻率分布直方圖,已知圖中從左到右的前3個小組的頻率之比為1:2:3,第2小組的頻數(shù)為10,則抽取的學生人數(shù)是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}為等差數(shù)列,Sn為其前n項和.若a3=﹣6,S1=S5 , 則公差d=;Sn的最小值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中, 平面, 分別為的中點, 是邊長為2 的正三角形, .

(1)證明: 平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.

(1)證明CD⊥AE;
(2)證明PD⊥平面ABE;
(3)求二面角A﹣PD﹣C的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,sinB= ,cosA= ,則sinC為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案