對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱(chēng)點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.經(jīng)過(guò)探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱(chēng)中心,且“拐點(diǎn)”就是對(duì)稱(chēng)中心.設(shè)函數(shù)g(x)=
1
3
x3-
1
2
x2+3x-
5
12
,則g(
1
2014
)+g(
2
2014
)+…+g(
2013
2014
)( 。
A、2011B、2012
C、2013D、2014
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專(zhuān)題:導(dǎo)數(shù)的概念及應(yīng)用
分析:求出原函數(shù)的導(dǎo)函數(shù),再求出導(dǎo)函數(shù)的導(dǎo)函數(shù),由導(dǎo)函數(shù)的導(dǎo)函數(shù)等于0求出x的值,可得g(1-x)+g(x)=2,從而得到g(
1
2014
)+g(
2
2014
)+…+g(
2013
2014
)的值.
解答: 解:∵g(x)=
1
3
x3-
1
2
x2+3x-
5
12
,
∴g′(x)=x2-x-3,由g(x)=2x-1=0,得x=
1
2

∴g(
1
2
)=1
∴g(x)的對(duì)稱(chēng)中心為(
1
2
,1),
∴g(1-x)+g(x)=2,
∴g(
1
2014
)+g(
2013
2014
)=g(
2
2014
)+g(
2012
2014
)=…=2g(
1007
2014
)=2g(
1
2
)=2.
∴g(
1
2014
)+g(
2
2014
)+…+g(
2013
2014
)=2013
故選C.
點(diǎn)評(píng):本題是新定義題,考查了函數(shù)導(dǎo)函數(shù)的零點(diǎn)的求法,考查了函數(shù)的性質(zhì),解答的關(guān)鍵是尋找函數(shù)值所滿(mǎn)足的規(guī)律,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=cos(2x+
π
3
),有下列結(jié)論:
①點(diǎn)(-
5
12
π,0)
是函數(shù)f(x)圖象的一個(gè)對(duì)稱(chēng)中心;
②直線(xiàn)x=
π
3
是函數(shù)f(x)圖象的一條對(duì)稱(chēng)軸;
③函數(shù)f(x)的最小正周期是π;
④函數(shù)f(x)的單調(diào)遞增區(qū)間為[-
12
+kπ,
π
12
+kπ](k∈Z)

其中所有正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x+m-1
2-x
,且f(1)=1
(1)求實(shí)數(shù)m的值;
(2)判斷函數(shù)y=f(x)在你區(qū)間(-∞,m-1]上的單調(diào)性,并用函數(shù)單調(diào)性的定義證明
(3)求實(shí)數(shù)k的取值范圍,使得關(guān)于x的方程f(x)=kx分別為:①有且僅有一個(gè)實(shí)數(shù)解②有兩個(gè)不同的實(shí)數(shù)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
x2
10
和y=|log3x|的交點(diǎn)個(gè)數(shù)有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中,a1=-2,公差d=3;數(shù)列{bn}中,Sn為其前n項(xiàng)和,滿(mǎn)足:2nSn+1=2n(n∈N+
(Ⅰ)記An=
1
anan+1
,求數(shù)列An的前n項(xiàng)和S;
(Ⅱ)求證:數(shù)列{bn}是等比數(shù)列;
(Ⅲ)設(shè)數(shù)列{cn}滿(mǎn)足cn=anbn,Tn為數(shù)列{cn}的前n項(xiàng)積,若數(shù)列{xn}滿(mǎn)足x1=c2-c1,且xn=
Tn+1Tn-1-
T
2
n
TnTn-1
(n∈N+,n≥2)
,求數(shù)列{xn}的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=(sinx+cosx)2+2cos2x-1.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)在[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,若log2a2+log2a8=1,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于函數(shù)f(x)=cos(sinx),下列說(shuō)法正確的是
 

①定義域?yàn)镽;
②值域?yàn)閇-1,1];
③最小正周期是2π;
④圖象關(guān)于直線(xiàn)x=
2
(k∈Z)對(duì)稱(chēng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)奇函數(shù)f(x)在(-∞,0)上為增函數(shù),且f(-1)=0,則不等式
f(-x)-f(x)
x
>0的解集為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案